Force 0.20 kg Object: Acceleration from Rest to 25 m/s

AI Thread Summary
A 0.20 kg object accelerates from rest to 25 m/s over 0.75 m, prompting a discussion on the force exerted on it. Participants suggest using kinematic equations for constant acceleration instead of the incorrect v = d/t formula, as speed is not constant during the motion. Two main approaches are proposed: applying kinematic equations to find acceleration and then using F = ma, or using the conservation of energy principle to relate work done to the change in kinetic energy. The conversation highlights the challenge of rearranging formulas to isolate variables like acceleration and time. Understanding these concepts is crucial for solving the problem effectively.
dance_sg
Messages
113
Reaction score
0

Homework Statement


A 0.20 kg object is struck with a stick causing it to accelerate from rest to a speed of 25 m/s over a highly polished surface for a distance of 0.75 m. What force has been exerted on the object?

Homework Equations


f=ma, v=d/t, a=v/t


The Attempt at a Solution


i used the formula v=d/t to find time so that i could use the formula a=v/t and plug time in there. once i found acceleration i tmultiplied that by the 0.20kg object.
 
Physics news on Phys.org
Try using conservation of energy instead.
 
how do i do that?
 
Do we know if the stick is in contact with the object over the 0.75m?
 
i don't think it is.. i think its more of just, the stick hit the object and sent it flying.
 
you can't use v = d/t to find the time needed because the speed is not constant
 
Have you talked about the 'kinematic equations for constant acceleration" in your class yet? If so, what are they?

If you can use the kinematic equations to find 'a', then how would you find 'F' ?
 
well I am not in a class. I am taking physics 20 through the summer virtually. so i don't really have a teacher.

how would i find time, if i can't use v=d/t formula?
 
There are 3 formulas for kinematic :
1. v = u + at ; v = final velocity ; u = initial velocity
2. v^2 = u^2 + 2as
3. s = ut + 1/2 at^2

Try it ^^
 
  • #10
You can't use " v = d/t " because v is not constant.

This is actually a very poorly worded, unrealistic question.

I *think* they want you to assume that " a " is constant (as if a constant force were applied to the object for the .75 meters). There are two ways to solve the problem.

1. For any object moving with constant acceleration, the following kinematic equations apply (you should know these for your physics class, and if you don't, memorize them now):

\Deltax = v0t + 1/2 at2

v = v0 + at

v2 = v02 + 2a\Deltax

\Deltax = 1/2 (v + v0)t

These equations apply for any situation where 'a' is constant. Assuming these equations apply, you know most of the information (v0, v, \Deltax), and you can use them to find 'a'. Then use F = ma.

2. The second approach is to use Conservation of Energy (as was suggested early in the thread). This is really the same as the first approach, if a and F are constant.

The fact you need is that the CHANGE in kinetic energy is equal to the work done on an object, or

\DeltaKE = F * \Deltax

What is the final KE of the object? What was the initial KE? The difference between them gives F * \Deltax, and you know \Deltax.
 
  • #11
but if i don't know the acceleration or time, how do i rearrange it to find both?
 
  • #12
you know initial speed, final speed, and distance...
 
  • #13
but with the formulas you've given, i need acceleration or time to solve it. if not i have to use v=d/t and that doesn't work as we have figured out..
 
  • #14
v^2 = u^2 + 2as

With that formula you can find acceleration
 
  • #15
ok, i think I am half retarded, because i cannt for the life of me rearrange that formula!
 
Back
Top