Force constant of a spring launching a satellite

AI Thread Summary
To design a spring for launching a 1200 kg satellite at 3.80 m/s with a maximum acceleration of 5g, the spring constant (k) must be calculated using the relationship between force, mass, and acceleration. The initial energy equation is simplified by ignoring gravitational potential energy, leading to the equation 0.5mv^2 = 0.5kx^2. By incorporating the maximum acceleration into the calculations, the spring force can be expressed as F = kx, and the relationship between k and x can be established. Ultimately, the spring constant is derived as k = (25mg^2)/v^2, allowing for the determination of both k and the compression distance x. This approach effectively resolves the problem using two equations with two unknowns.
ph123
Messages
41
Reaction score
0
You are asked to design a spring that will give a 1200 kg satellite a speed of 3.80 m/s relative to an orbiting space shuttle. Your spring is to give the satellite a maximum acceleration of 5.00g. The spring's mass, the recoil kinetic energy of the shuttle, and changes in gravitational potential energy will all be negligible.

a) What must the force constant of the spring be?

b) What distance must the spring be compressed?

I don't really know how to approach this problem, since without the spring constant (k), you cannot find the distance the spring is compressed (x) and vice versa.

But, according to the problem,

0.5kx^2 + mgh = 0.5mv^2 +5mgh
0.5kx^2 = 0.5mv^2 + 4mgh
kx^2 = mv^2 + 8mgh
k = (mv^2 + 8mgh)/x^2

I know this has to be wrong because there are three unknowns, h, x, and k. Can someone help me approach this differently?
 
Physics news on Phys.org
You were told to ignore the gravitational potential energy, so drop the mgh terms. Then your energy equation is correct, but you still have two unknowns. Now use the condition that the maximum acceleration the spring is supposed to impart is 5g. (F=ma etc).
 
0.5mv^2 = 0.5kx^2

I am not seeing how to incorporate acceleration into this equation. To find the work done by the force of the spring,

F= ma = 5mg * x = 5mgx ??
 
For a spring, F=k*x, right? You don't incorporate it into that equation, you derive another equation. 2 equations+2 unknowns=happiness.
 
ahhhh.

so

F=kx
5mg=kx
x=(5mg)/k

0.5mv^2 = 0.5kx^2
mv^2 = kx^2
mv^2 = k([5mg]/k)^2
mv^2 = k(25m^2g^2)/(k^2)
k = (25mg^2)/v^2

right? i think so, yay
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top