FeynmanIsCool
- 121
- 0
Hello,
I am working through Munkres Topology (not for a class). It asks the reader to formulate and proove DeMorgans Laws. I am new to proofs, so I was wondering if this is what the book is asking. Any help would be appreciated!
assume two sets
\, \,\begin{Bmatrix}<br /> A-(B\cup C)\,<br /> \end{Bmatrix}\, and\, \begin{Bmatrix}<br /> (A-B)\cup (A-C)<br /> \end{Bmatrix}\, \, \,
\forall x\in (B\cup C), x\in B\, or\, x\in C \, or \, both
\therefore \, \, \forall x\, \in\begin{Bmatrix}<br /> A-(B\cup C)\,<br /> \end{Bmatrix}, x\in A
Now,
\forall x\in (A-B), \, x\in A\, \, and\, \, \forall x\in (A-C), \, \, x\in A
\Rightarrow \forall x\in \begin{Bmatrix}<br /> (A-B)\cap (A-C), \, x \in A<br /> \end{Bmatrix}x \in AThus: \begin{Bmatrix}<br /> A-(B \cup C)<br /> \end{Bmatrix}<br /> =\begin{Bmatrix}<br /> (A-B)\cap (A-C)<br /> \end{Bmatrix}
Does this proove DeMorgans Law (just the first one)? Formally?
Thanks again!
I am working through Munkres Topology (not for a class). It asks the reader to formulate and proove DeMorgans Laws. I am new to proofs, so I was wondering if this is what the book is asking. Any help would be appreciated!
assume two sets
\, \,\begin{Bmatrix}<br /> A-(B\cup C)\,<br /> \end{Bmatrix}\, and\, \begin{Bmatrix}<br /> (A-B)\cup (A-C)<br /> \end{Bmatrix}\, \, \,
\forall x\in (B\cup C), x\in B\, or\, x\in C \, or \, both
\therefore \, \, \forall x\, \in\begin{Bmatrix}<br /> A-(B\cup C)\,<br /> \end{Bmatrix}, x\in A
Now,
\forall x\in (A-B), \, x\in A\, \, and\, \, \forall x\in (A-C), \, \, x\in A
\Rightarrow \forall x\in \begin{Bmatrix}<br /> (A-B)\cap (A-C), \, x \in A<br /> \end{Bmatrix}x \in AThus: \begin{Bmatrix}<br /> A-(B \cup C)<br /> \end{Bmatrix}<br /> =\begin{Bmatrix}<br /> (A-B)\cap (A-C)<br /> \end{Bmatrix}
Does this proove DeMorgans Law (just the first one)? Formally?
Thanks again!
Last edited: