Fourier Analysis for |x| and Proving a Series Convergence

RJLiberator
Gold Member
Messages
1,094
Reaction score
63

Homework Statement


Consider a 2pi-periodic function f(x) = |x| for -pi ≤ x ≤ pi
a) Compute the Fourier series of the function f.
b) Prove that (from n=1 to n=infinity)∑ 1/(2k-1)^2 = pi^2/8.**note all "sums" from here on out will be defined from n = 1 to n=infinity

Homework Equations

The Attempt at a Solution



For part a we start with the definition of the Fourier series
f(x) = 1/2*a_0 + ∑(a_n*cos(n*x)+b_n*sin(n*x))

Since f is an even function, we know that b_n = 0.

a_n = (2/pi)*integral from 0 to pi of (x*cos(nx))dx
a_n = 2((-1)^n-1)/(pi*n^2)

a_0 = 1/pi * integral from -pi to pi of |x| dx = pi

So we have the following Fourier series for f(x) and the answer for part a:

pi/2 + ∑2((-1)^n-1)/(pi*n^2) * cos(nx)
For part b, we set x = 0, and find

|x| = pi/2 + ∑2((-1)^n-1)/(pi*n^2) * cos(nx)
=> -pi/2 = ∑2((-1)^n-1)/(pi*n^2)
=> -pi^2/4 = ∑((-1)^n-1)/n^2
Divide both sides by -2
=> pi^2/8 = ∑((-1)^n-1)/(-2*n^2)
But I'm not quite sure how to get the right side (the sum) similar to ∑ 1/(2k-1)^2
 
Last edited:
Physics news on Phys.org
You wonder how ## {1\over 1} + 0 + {1\over 9} + 0 + {1\over 25} ... ## (n = 1, 2, 3, 4, 5) can be equal to
## {1\over 1} + {1\over 9} + {1\over 25} ... ## (k = 1, 2, 3) :smile: ?
 
  • Like
Likes RJLiberator
Ah, I see.

So, in the end, I was doing things right here.

It was my inability to manipulate the problem to come to the conclusion.

Tough, tough course.
 
Good thing there is PF :wink:
 
  • Like
Likes RJLiberator
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top