twoflower
- 363
- 0
Hi all,
I've been having little problems getting Fourier series of e^x.
I have given
<br /> f(x) = e^{x}, x \in [-\pi, \pi)<br />
Then
<br /> a_0 = \frac{1}{\pi}\int_{-\pi}^{\pi} e^{x}\ dx = \frac{2\sinh \pi}{\pi}<br />
<br /> a_{n} = \frac{1}{\pi}\int_{-\pi}^{\pi} e^{x}\cos (nx)\ dx = <br /> <br /> \frac{1}{\pi}\left\{\left[ \frac{1}{n}\ e^{x} \sin (nx)\right]_{-\pi}^{\pi} - <br /> <br /> \frac{1}{n}\int_{-\pi}^{\pi} e^{x}\sin (nx)\ dx\right\} = <br /> <br /> \frac{(-1)^{n+1}\left(e^{-\pi} - e^{\pi}\right)}{\pi(1+n^2)}<br />
<br /> b_{n} = \frac{1}{\pi}\int_{-\pi}^{\pi}e^{x}\sin (nx)\ dx = \frac{1}{\pi}\left\{ <br /> <br /> \left[ -\frac{1}{n}\ e^{x}\cos (nx)\right]_{-\pi}^{\pi} + <br /> <br /> \frac{1}{n}\int_{-\pi}^{\pi} e^{x}\cos(nx)\ dx\right\} = <br /> <br /> \frac{n(-1)^{n}\left(e^{-\pi} - e^{\pi}\right)}{\pi(1+n^2)}<br />
So the Fourier series looks like this:
<br /> S(f,x) = \frac{\sinh \pi}{\pi}\ +\ \frac{2\sinh \pi}{\pi}\sum_{n=1}^{\infty} <br /> <br /> \frac{(-1)^{n+1}}{1+n^2}\left(\cos(nx) - n\sin(nx))<br />
Anyway, our professor gave us another right (I hope so) result:
<br /> S(f,x) = \frac{\sinh \pi}{\pi}\ +\ \frac{2\sinh \pi}{\pi}\sum_{n=1}^{\infty} <br /> <br /> \frac{(-1)^{n}}{1+n^2}\left(\cos(nx) - n\sin(nx))<br />
Obviously my series is just of opposite sign than it should be, but I can't find
the mistake, could you help me please?
I've been having little problems getting Fourier series of e^x.
I have given
<br /> f(x) = e^{x}, x \in [-\pi, \pi)<br />
Then
<br /> a_0 = \frac{1}{\pi}\int_{-\pi}^{\pi} e^{x}\ dx = \frac{2\sinh \pi}{\pi}<br />
<br /> a_{n} = \frac{1}{\pi}\int_{-\pi}^{\pi} e^{x}\cos (nx)\ dx = <br /> <br /> \frac{1}{\pi}\left\{\left[ \frac{1}{n}\ e^{x} \sin (nx)\right]_{-\pi}^{\pi} - <br /> <br /> \frac{1}{n}\int_{-\pi}^{\pi} e^{x}\sin (nx)\ dx\right\} = <br /> <br /> \frac{(-1)^{n+1}\left(e^{-\pi} - e^{\pi}\right)}{\pi(1+n^2)}<br />
<br /> b_{n} = \frac{1}{\pi}\int_{-\pi}^{\pi}e^{x}\sin (nx)\ dx = \frac{1}{\pi}\left\{ <br /> <br /> \left[ -\frac{1}{n}\ e^{x}\cos (nx)\right]_{-\pi}^{\pi} + <br /> <br /> \frac{1}{n}\int_{-\pi}^{\pi} e^{x}\cos(nx)\ dx\right\} = <br /> <br /> \frac{n(-1)^{n}\left(e^{-\pi} - e^{\pi}\right)}{\pi(1+n^2)}<br />
So the Fourier series looks like this:
<br /> S(f,x) = \frac{\sinh \pi}{\pi}\ +\ \frac{2\sinh \pi}{\pi}\sum_{n=1}^{\infty} <br /> <br /> \frac{(-1)^{n+1}}{1+n^2}\left(\cos(nx) - n\sin(nx))<br />
Anyway, our professor gave us another right (I hope so) result:
<br /> S(f,x) = \frac{\sinh \pi}{\pi}\ +\ \frac{2\sinh \pi}{\pi}\sum_{n=1}^{\infty} <br /> <br /> \frac{(-1)^{n}}{1+n^2}\left(\cos(nx) - n\sin(nx))<br />
Obviously my series is just of opposite sign than it should be, but I can't find
the mistake, could you help me please?
Last edited: