• Support PF! Buy your school textbooks, materials and every day products via PF Here!

Fourier sine series of cos 2x

Problem Statement
Find the Fourier sine series of cos 2x on [0, π]
Relevant Equations
$$b_n = \dfrac{2}{l} \int^\pi _0 f(x) sin(\dfrac{n\pi x}{l})dx$$
I am attempting to find the sine representation of cos 2x by letting

$$f(x) = \cos2x, x>0$$ and $$-\cos2x, x<0$$

Which is an odd function. Hence using $$b_n = \dfrac{2}{l} \int^\pi _0 f(x) \sin(\dfrac{n\pi x}{l})dx$$ I obtain $$b_n = \dfrac{2n}{\pi} \left( \dfrac{(-1)^n - 1}{4-n^2} \right)$$

which when I plot the sine series

$$\sum^\infty _{n=3} \dfrac{2n}{\pi} \left( \dfrac{(-1)^n - 1}{4-n^2} \right) \sin(n x)$$

I don't get the fn of cos 2x on [0, π]. I don't understand where I went wrong any help would be great.
 

BvU

Science Advisor
Homework Helper
11,828
2,577
Don't follow: you make an odd continuation of ##f(x)## but don't actually use it: your bounds are 0 and ##\pi##
 
Don't follow: you make an odd continuation of ##f(x)## but don't actually use it: your bounds are 0 and ##\pi##
Yes, this is true, but I used the formula for $$b_n$$ that assumes I do indeed have an odd function
 

BvU

Science Advisor
Homework Helper
11,828
2,577
So basically you have only forced ##\ f(0) = f(\pi)=0\ ## as is necessary with a sine series.

(and integrating from ##\pi## to ##2\pi## gives the same as from 0 to ##\pi## anyway)

I tried a cheat and got (for n up to 9):

241922

so it looks your result is fine. Why do you think otherwise ?
 
When I plotted the Fourier series on top of the function cos2x they did not match

So basically you have only forced ##\ f(0) = f(\pi)=0\ ## as is necessary with a sine series.

(and integrating from ##\pi## to ##2\pi## gives the same as from 0 to ##\pi## anyway)

I tried a cheat and got (for n up to 9):

View attachment 241922
so it looks your result is fine. Why do you think otherwise ?
 

BvU

Science Advisor
Homework Helper
11,828
2,577
When I plotted the Fourier series on top of the function cos2x they did not match
Like 'not at all', 'not very well', 'not perfectly' ?

Did you check the link ? it has a plot too ...

To get a good match you need an awful lot of terms: the function has to jump from 0 to 1 in a step of 'size zero' at ##x=0##
 

LCKurtz

Science Advisor
Homework Helper
Insights Author
Gold Member
9,463
714
Edit[added]: I didn't notice your sum started at n=3. Anyway here's a plot to compare with.

@Morbidly_Green: Your problem is your formula for ##b_n## when ##n=2##. You need to calculate ##b_2## separately, and when you do, you will find than ##b_2=0##. Once you fix that, your plot should look better. Here's what I get for the first 10 terms:
fs.jpg
 
Edit[added]: I didn't notice your sum started at n=3. Anyway here's a plot to compare with.

@Morbidly_Green: Your problem is your formula for ##b_n## when ##n=2##. You need to calculate ##b_2## separately, and when you do, you will find than ##b_2=0##. Once you fix that, your plot should look better. Here's what I get for the first 10 terms:
View attachment 241924
Ah yes! Thank you, I completely forgot that you can't just ignore the first terms !
 

BvU

Science Advisor
Homework Helper
11,828
2,577
In particular ##b_1## ! Why did you start at ##n=3## ?
 
In particular ##b_1## ! Why did you start at ##n=3## ?
Since n=2 would yield a division by zero I started from the first calculable term, n=3, and as I said I forgot how important the terms before are
 

BvU

Science Advisor
Homework Helper
11,828
2,577
OK, thanks. All in all: well done !
 

Ray Vickson

Science Advisor
Homework Helper
Dearly Missed
10,705
1,710
I am attempting to find the sine representation of cos 2x by letting

$$f(x) = \cos2x, x>0$$ and $$-\cos2x, x<0$$

Which is an odd function. Hence using $$b_n = \dfrac{2}{l} \int^\pi _0 f(x) \sin(\dfrac{n\pi x}{l})dx$$ I obtain $$b_n = \dfrac{2n}{\pi} \left( \dfrac{(-1)^n - 1}{4-n^2} \right)$$

which when I plot the sine series

$$\sum^\infty _{n=3} \dfrac{2n}{\pi} \left( \dfrac{(-1)^n - 1}{4-n^2} \right) \sin(n x)$$

I don't get the fn of cos 2x on [0, π]. I don't understand where I went wrong any help would be great.
You need to keep ##a_1, a_3, a_4, \ldots##. You could also include ##a_2##, but you cannot use the general form for ##a_n##: you need to put ##a_2=0## manually.
 

Want to reply to this thread?

"Fourier sine series of cos 2x" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top