compliant
- 43
- 0
Homework Statement
Find the solution u, via the Fourier sine/cosine transform, given:
u_{tt}-c^{2}u_{xx}=0
IC: u(x,0) = u_{t}(x,0)=0
BC: u(x,t) bounded as x\rightarrow \infty , u_{x}(0,t) = g(t)
2. The attempt at a solution
Taking the Fourier transform of the PDE, IC and BC:
U_{tt}-c^{2}(i\lambda)^{2}U=0
U_{tt}+c^{2}\lambda^{2}U=0
which is an ODE in t, so two linearly independent solutions of the homogeneous equation are sin(\lambda ct) and cos(\lambda ct).
If I take a linear combination of these two solutions, I get zero constants, which eventually leaves me with u = 0 as a solution, or at least one that's only x-dependent.
But if u is x-dependent, U_{tt} = 0 \Rightarrow c^{2}\lambda^{2}U=0 \Rightarrow U = 0
which still leaves me with u = 0 as a solution, and, no offense, for a homework problem, that's kind of lame. That's why I'm suspicious, and asking to see if I'm doing it right.
Last edited: