Fourier tr. of dirac delta in minkowski space

fliptomato
Messages
78
Reaction score
0
Hey everyone, a quick question: what is the Fourier space representation of the dirac delta function in minkowski space? It should be some integral over e^{ikx} (with some normalization with 2*pi's). I'm curious if the "kx" is a dot product in the minkowski or euclidean sense, and how one reasons this.

Any thoughts? =)
Flip
 
Physics news on Phys.org
Well, of course

\delta^{4}\left(x-x'\right) =\frac{1}{\left(2\pi\right)^4}\int_{M_{4}} d^{4}k \ e^{ik^{\mu}\left(x-x'\right)_{\mu}

where the metric on M_{4} is (conventionally) diag(+,-,-,-).

Daniel.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top