Fourier Transform Power Spectrum

cscott
Messages
778
Reaction score
1
Input: sine wave at 10Hz, amplitude 1.

After the transform the plot has a spike at 10Hz with amplitude 0.5. If I vary the amplitude of the sine wave I get:

sine amp. - FT spike amp.
1 - 0.5
2 - 2
4 - 8

So it seems A' = A^2/2

Is this because power is proportional to A^2 and it is averaged over trough/crest so division by 2?
 
Physics news on Phys.org
Are you adding real and imaginary parts?

The power should be the same in both domains.
 
Sorry I think I asked my question poorly.

I'm doing this in a lab using LabVIEW and it's doing the FT. When I input a sine wave (vs time) with varied amplitude 'A', I get an output spike of amplitude (A^2)/2 centered at some fixed frequency. Is this because P \propto A^2? Is the half for 'average'?

I'm just trying to make sense of what this VI is doing. All I know is "computes the averaged auto power spectrum of time signal".

Does my data still make no sense?

I'm not directly dealing with imaginary parts...
 
Last edited:
OK- you probably forgot to add the power in -ve and +ve frequencies.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top