Fourth order Dirichlet bounday value problem

  • Thread starter Thread starter ODEMath
  • Start date Start date
  • Tags Tags
    Value
ODEMath
Messages
3
Reaction score
0
Consider the fourth order Dirichlet (biharmonic) boundary value problem

y^(4) + [ lambda - q(t)] y = 0 in ( 0,1),

y(0) = y'(0) = 0

y(1) = y'(1) = 0

Where q : [0,1] -> R is continuous function. Prove that if phi(t, lambda 1) and phi(t, lambda 2) are solutions of this equation corresponding to distinct values of lambda, i.e., lambda 1 doesn't equal lambda2, then functions phi(t, lambda 1) and phi(t, lambda2) are orthogonal on (0,1).
 
Physics news on Phys.org
you must itegrate this eeqution
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top