Fractals of rational dimension and fractals of integral powers

Loren Booda
Messages
3,108
Reaction score
4
What generalizations can be made concerning fractals of nonzero rational dimensions M/N (where M and N are nonzero integers)?

How does a fractal of non-integral dimension F compare geometrically to a fractal of dimension GF, where G is a nonzero integer?
 
Mathematics news on Phys.org
In the first paragraph, I was concerned with a fractal space that could be raised to the integer Nth power to obtain a whole number dimensional space.

Similarly, in the second paragraph, I wondered about the geometry of an "axis" of fractal dimension F extended to G axes to produce a GF fractal dimensional space, or moreso, comparing the geometry of int[GF] dimensional spaces of int[GF] axes for G=1, 2, 3... .
 
Believe the Serpinski gasket has a fractal dimension of exactly two.
 
Originally posted by Ben-CS
Believe the Serpinski gasket has a fractal dimension of exactly two.

no - triangle has a dimension of 1.58. Carpet has a dimension of 1.89.

If its dimension was 2 it wouln't be a fractal.

Cheers,

ron.

Can't help with the earlier Q.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top