MHB Fractional Logarithmic Integral 02

Click For Summary
The integral $$\int^1_0 \frac{\log (1+x)}{1+x^2} dx$$ is evaluated using results from previous work on fractional logarithmic integrals. A related integral, $$\int^{1}_0 \frac{2\log(1+x)}{1+x^2}\, dx$$, is shown to be numerically equivalent to $$\frac{\pi}{4}\log(2)$$. The discussion references the dilogarithm function, specifically the use of $$\text{Li}_2$$ in the evaluations. The numerical equivalence of the original integral is established as $$\frac{\pi}{8}\log(2)$$. A detailed proof for these results will be provided later.
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
$$\int^1_0 \frac{\log (1+x)}{1+x^2} dx $$

$\log $ is the natural logarithm .
 
Mathematics news on Phys.org
Here is a hint
Try series expansion and harmonic sums
 
Using a result that I proved http://www.mathhelpboards.com/f10/generalized-fractional-logarithm-integral-5467/#post25055

$$\int^t_0 \frac{\log(1+ax)}{1+x}\, dx = - \text{Li}_2 \left( \frac{t}{t+1} \right) +\text{Li}_2 \left(\frac{t-ta}{t+1}\right)-\text{Li}_2(-at)$$

$$\int^{1}_0 \frac{2\log(1+x)}{1+x^2}\, dx = i \text{Li}_2 \left( \frac{1+i}{2} \right)-i \text{Li}_2 \left( \frac{1-i}{2} \right) -i\text{Li}_2 \left(i \right)+i\text{Li}_2 \left(-i \right)$$

Which is numerically equivalent to

$$\int^{1}_0 \frac{2\log(1+x)}{1+x^2}\, dx= \frac{\pi}{4}\log(2)$$

$$\int^{1}_0 \frac{\log(1+x)}{1+x^2}\, dx= \frac{\pi}{8}\log(2)$$

The proof of numerical equivalence is quite long , post it later .
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
14K
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K