Friction force in rotational motion

AI Thread Summary
For an object rolling without slipping down an incline, the static frictional force must remain less than or equal to its maximum value, μsFn, to prevent slipping. If the frictional force exceeds this limit, the object will begin to slip, transitioning to kinetic friction. Static friction is present in rolling motion because the point of contact remains at rest relative to the surface, opposing any relative motion. When slipping occurs, the frictional force becomes kinetic due to the relative speed between the contact point and the ground. The fundamental principle is that static friction cannot exceed its maximum threshold, ensuring stable dynamics in rotational motion.
daivinhtran
Messages
68
Reaction score
0
My textbook says, "for an object rolling without slipping down an incline, the frictional force fs is less than or equal to its maximum value. fs < μsFn

Why is that? What happen it's greater than??

When do we have static friction in rotational motion? (for rolling object)

Then in an example problem about rolling with slipping, it says "there is slipping so the friction is kinetic (not static).? Same question. ==> Why?
 
Last edited:
Physics news on Phys.org
For the first question,
friction as in all conditions has a limit.(well u know it). If it weren't that way the world wouldn't function into dynamics(only rotation). down a plane, friction has limit μ*mg*cosθ.if it weren't the way it were, there wouldn't be any slipping. For the moment it might look like it's good. But think like everything stuck to everything.

For second Q,
As you can see that the point of contact in rolling without slipping is at rest.friction acts against the relative motion b/w contact points. That's the work of friction (static).
If you wan't to cause a change in the velocity profile, you have to go against static friction.
For visualization , think a rotating object with spurs (gears) on a profiled (as in the gear) plane.
If it were rolling without slipping, the gear tooth will exactly match into the profiled plane. So there isn't any relative motion b/w the object's point of contact and the plane. If you like to alter the motion you would have to move uphill (That is the static friction in microscopic scale)
causing a relative speed at that instant. If it gains velocity (with slipping) it has inertia . So it turns to dynamic friction. So ,all matters is the relative speed b/w point of contact and the ground (not the body's velocity with the ground)
 
rahulpark said:
For the first question,
friction as in all conditions has a limit.(well u know it). If it weren't that way the world wouldn't function into dynamics(only rotation). down a plane, friction has limit μ*mg*cosθ.if it weren't the way it were, there wouldn't be any slipping. For the moment it might look like it's good. But think like everything stuck to everything.

For second Q,
As you can see that the point of contact in rolling without slipping is at rest.friction acts against the relative motion b/w contact points. That's the work of friction (static).
If you wan't to cause a change in the velocity profile, you have to go against static friction.
For visualization , think a rotating object with spurs (gears) on a profiled (as in the gear) plane.
If it were rolling without slipping, the gear tooth will exactly match into the profiled plane. So there isn't any relative motion b/w the object's point of contact and the plane. If you like to alter the motion you would have to move uphill (That is the static friction in microscopic scale)
causing a relative speed at that instant. If it gains velocity (with slipping) it has inertia . So it turns to dynamic friction. So ,all matters is the relative speed b/w point of contact and the ground (not the body's velocity with the ground)

So what happen if fs > μsFn?
 
daivinhtran said:
So what happen if fs > μsFn?

It can not happen. The static friction can not be grater than μsFn.

When you pull an object, resting on the ground, with force F, and F<μsFn the object stays in rest. If the object can roll, it will roll.

If you pull an object with force F>μsFn it will slip.

ehild
 
daivinhtran said:
So what happen if fs > μsFn?
what does fs in ur statement mean? frictional force or applied force
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top