Friction problem with loop (work and energy)

AI Thread Summary
The discussion focuses on determining the minimum height required for an amusement park car to complete a loop with friction considered. The user successfully solved the problem without friction but struggles when incorporating it, particularly in calculating the work done by friction during the loop. They have derived equations for the car's velocity at various points but are confused about estimating the normal force and the work done by friction in a circular motion. The user seeks clarification on how to accurately estimate the work done by friction when the car has an initial velocity and is navigating the loop. The thread highlights the complexities of integrating forces and motion in a frictional context.
pulcroman
Messages
5
Reaction score
0
Hello, i appreciate your help!

1. Homework Statement
In this website the drawing of the situation in the first exercise can be seen, for better understanding.
http://wwwprof.uniandes.edu.co/~gtel...s-semana10.pdf

The problem asks me to determine the minimum height h to allow an amousement park car to complete a loop with radius r without falling. The inicial velocity is 0. In the beginning, i had to do it without friction, with no problem. The horribleness started when i tried to do it with friction, more specifically in the loop part.
I use v1 for the speed after it falls the height h, v2 for the time it continues by the flat, and v3 for the speed in the tallest part of the loop. (Question in the last sentencie, for the impatient readers :) )

2. Homework Equations

E2-E1=-W; W=Fk dx; Fk=µk N. E(1,2)= Ek+Ep

3. The Attempt at a Solution

For the beginning of the movement, the fall from the height h to the floor, assuming is a straight plane is given by:
m g h - 1/2 m v1^2 = -µk m g cosø (h/senø)<---that last is the distance from h.
v1=√(2 g h-g h µk cotø) <---- i'll go fast, in he first steps. I just simplified v1.

for the second part, when the car moved a small part on a flat, i had
1/2 m v2^2 - 1/2 mv1^2=-µk m g cos ø x <--- x=dx, distance.
v2=√(2gh - g h µk cotø -2 g x µk)

Now, in the loop.
I've tried everything, and can't come up with a reliable solution. I know i can use
1/2 m v3^2+ mg(2r) - 1/2 m v2^2=-Fk x2

well, x2 is πr because it'll just half the circle, but I am having a real bad time finding the normal force for the Fk=µk N. Because, for a circular movement i got:
N= (m v^2)/r + m g cos ø
is v changing? if i integrate for ø from 0 to π it'll give 0! if i want to find the tangential acceleration i'll complicate myself even more. So, in a summary, the big question i want to ask is

How do you estimate the work made by friction on a loop with given inicial velocity, so the car won't fall? Thank you very much!
 
Last edited by a moderator:
Physics news on Phys.org
The link does not work. Show a picture in an other way. ehild
 
ok, there it goes http://wwwprof.uniandes.edu.co/~gtellez/fisica1/ejercicios-semana10.pdf

i wanted to add: what will be the TOTAL work made by friction passing on half of a loop (this is for purposes of integration, if necessary !)
 
Last edited by a moderator:
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top