I Function to find the probability distribution of a stock price

AI Thread Summary
A formula is sought to calculate the probability distribution of a stock price after a specified number of days, assuming price changes follow a normal distribution. The initial stock price is $100, with a daily standard deviation of 3.5%. It is suggested that the distribution after one day is normal, but the standard deviation for subsequent days depends on prior values, leading to the recommendation of using a log-normal distribution instead. The discussion highlights the mathematical complexities involved, particularly in deriving the final standard deviation over multiple days. The log-normal distribution is emphasized as a more appropriate model for stock prices due to its avoidance of negative values.
beamthegreat
Messages
116
Reaction score
7
Hi all. I'm trying to find a formula that will calculate the probability distribution of a stock price after X days, using the assumption that the price change follows a normal distribution. In the spreadsheet, you can see the simulation I've made of the probability distribution of the price of a stock that is initially at $100 after 252 days (1 trading year, using the assumption that the price moves with an SD of 3.5% per day)

Can someone please direct me to the simplified formula I can use to calculate this? I'm certain this has been done before.

Thanks!

Link: https://docs.google.com/spreadsheets/d/1beooSijC0OJ4uBfC_a-dxveeplFmfTBTiy4QoIhbC28/edit?usp=sharing
 
Mathematics news on Phys.org
beamthegreat said:
Hi all. I'm trying to find a formula that will calculate the probability distribution of a stock price after X days, using the assumption that the price change follows a normal distribution. In the spreadsheet, you can see the simulation I've made of the probability distribution of the price of a stock that is initially at $100 after 252 days (1 trading year, using the assumption that the price moves with an SD of 3.5% per day)
So the idea is that the probability distribution at the end of one day is a normal distribution with mean equal to the morning's value and standard deviation equal to 3.5 percent of the morning's value? And that the distribution at the end of 252 days is the result of iterating this procedure 252 times?

The obvious difficulty is that the standard deviation for the second day's normal distribution will depend on the value of the sample drawn from the first day's distribution. The obvious remediation would be to use a log-normal distribution. Sum up 252 of those and take the anti-log.

https://en.wikipedia.org/wiki/Log-normal_distribution

[As an bonus, the log normal distribution is not obviously impossible. The normal distribution is obviously impossible since the left hand tail has a non-zero probability for negative prices]
 
  • Like
Likes mfb
jbriggs444 said:
So the idea is that the probability distribution at the end of one day is a normal distribution with mean equal to the morning's value and standard deviation equal to 3.5 percent of the morning's value?

That is correct.

jbriggs444 said:
The obvious difficulty is that the standard deviation for the second day's normal distribution will depend on the value of the sample drawn from the first day's distribution. The obvious remediation would be to use a log-normal distribution. Sum up 252 of those and take the anti-log.

I got the gist of it, but I don't have sufficient knowledge of mathematics to derive the expression myself. I tried approximating it with a normal distribution using the following equation to find the final SD after n days, which is pretty accurate if n is small, but the distribution becomes increasingly skewed as the number of days increases: ##SD_{final} = \sqrt {nSD_{initial}^2}##

I have no idea how to use the log-normal distribution to remediate this. Any help will be appreciated.
 
beamthegreat said:
That is correct.
I got the gist of it, but I don't have sufficient knowledge of mathematics to derive the expression myself. I tried approximating it with a normal distribution using the following equation to find the final SD after n days, which is pretty accurate if n is small, but the distribution becomes increasingly skewed as the number of days increases: ##SD_{final} = \sqrt {nSD_{initial}^2}##

I have no idea how to use the log-normal distribution to remediate this. Any help will be appreciated.
I've never used one either, but the principle seems simple enough.

With a normal distribution, you'd be looking at a distribution of percentage growth which is centered on 0% growth with standard deviation 3.5%. So we are talking about a bell shaped curve roughly from 96.5% to 103.5% of the morning's starting value.

If we represent those values as natural logs, that's ln(96.5%) to ln(103.5%). Using the small log approximation, that's about -0.035 to +0.035. If precision is important, you could transform the normal distribution more carefully, taking the natural log of every value.

Pretend for the moment that the resulting distribution is approximately normal. So we have an estimated distribution with mean 0 and standard deviation approximately 0.035. But after summing with itself 252 times, the result will be a lot closer to normal. So we estimate the true distribution after 252 days as a normal distribution with mean = 252 times 0 and standard deviation = ##\sqrt{252}## times 0.035. The standard deviation of this will be around 0.55 -- corresponding to a rise or fall by a factor of ##e^{0.55}## ~= 1.73 in price.

Rescale this normal distribution by taking the exponential of each point and you have your expected final distribution. I do not expect that this will be a normal distribution.

Edit: It is gratifying to see that Wiki makes essentially the same points:

Occurrence and applications[edit]

The log-normal distribution is important in the description of natural phenomena. This follows, because many natural growth processes are driven by the accumulation of many small percentage changes. These become additive on a log scale. If the effect of anyone change is negligible, the central limit theorem says that the distribution of their sum is more nearly normal than that of the summands. When back-transformed onto the original scale, it makes the distribution of sizes approximately log-normal (though if the standard deviation is sufficiently small, the normal distribution can be an adequate approximation).
 
Last edited:
beamthegreat said:
That is correct.
I got the gist of it, but I don't have sufficient knowledge of mathematics to derive the expression myself. I tried approximating it with a normal distribution using the following equation to find the final SD after n days, which is pretty accurate if n is small, but the distribution becomes increasingly skewed as the number of days increases: ##SD_{final} = \sqrt {nSD_{initial}^2}##

I have no idea how to use the log-normal distribution to remediate this. Any help will be appreciated.
Google "lognormal distribution".
 
Stock prices are not lognormal, returns are not normal. What are you trying to do with this?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top