joshmccraney said:
I don't know how to solve because the problem is unbounded. For me, I'm at the same spot if the RHS was ##\delta(t)## or ##\delta(t-t_0)##. Can you give me an idea for direction?
Typically I would use BCs at left and right endpoints and construct the Green's function via variation of parameters. But I can't do this since I don't know how to handle the unbounded nature of the problem.
Here is how I was taught this stuff back in the Stone Age.
Let us take the DE to be ##t u''(t) - u'(t) = \delta(t-a), \; a \neq 0.##
We want a particular solution ##u_p(t).## Furthermore, let's require that ##u_p(t)## be continuous at ##t=a## and that ##u'_p(t)## remain finite in a neighborhood of ##t=a.## Then, we must have
$$\begin{array}{rcr}
u_p(a+) - u_p(a-) & =0& \hspace{3ex}(1) \\
a[u'_p(a+) - u'_p(a-)]& = 1& \hspace{3ex}(2)
\end{array}$$ The first condition is just continuity of ##u_p(t)## at ##t=a##, while the second one is a jump condition on ##u_p'(t)## at ##t=a##:
$$\lim_{\epsilon \to 0} \int_{a-\epsilon}^{a+\epsilon} t u_p''(t) \, dt = \lim_{\epsilon \to 0} \int_{a-\epsilon}^{a+\epsilon} \delta(t-a) \, dt = 1$$ where we use the fact that the other terms ##\int_{a-\epsilon}^{a+\epsilon} u_p'(t)(t) \, dt \to 0## as ##\epsilon \to 0## because of finiteness of ##u'_p(t).##
If we write
$$u_p(t) = \begin{cases} b_1 + c_1 t^2 , & t < a\\
b_2 + c_2 t^2 , & t \geq a
\end{cases}$$
then conditions (1) and (2) give
$$\begin{array}{ccr}
b_1+c_1 a^2 - b_2 - c_2 a^2 &=0& \hspace{3ex}(1a) \\
2 a^2 c_2 - 2 a^2 c_1 &=1 & \hspace{3ex}(2a)
\end{array}$$
We can place two additional restrictions on the ##b_i, c_i## in order to get a unique solution. For example, we could take ##b_1 = 0, c_1 = 0##.
We can get a general ##u(t)## by adding the one-piece homogeneous solution ##b+c t^2## onto this specific ##u_p(t).##
Now we can see what would go wrong if we try taking ##a=0##: the jump condition would be ##0 [u_p'(0+) - u_p'(0-)] = 1, ## which is not possible if both ##u_p'(0\, \pm)## are finite.