Gamma factor when doing four momentum problems

AI Thread Summary
The discussion centers on the application of the gamma factor in four-momentum problems, particularly when squaring a four-momentum vector. A correction is made regarding the gamma factor's definition, clarifying it should be γ = 1/√(1-v²/c²). The conversation explores scenarios involving particle collisions, emphasizing that the gamma factor may not always be present in certain terms, particularly when one particle is stationary. It is highlighted that neglecting the gamma factor could lead to violations of conservation laws, specifically momentum conservation. The overall consensus is that understanding the algebraic manipulation of four-momentum is crucial for accurate calculations.
bonbon22
Messages
92
Reaction score
5
Homework Statement
Why does the gamma factor drop off when doing a four momentum problem?
Relevant Equations
ϒ = gamma factor = lorentz factor = 1-( v^2/c^2)
So if i had this problem where i am squaring a four momentum vector with itself which gives

P2 = (##\gamma mc## )2 - ##\gamma##2## m ##2##\vec v## *##\vec v##

I have been told that the gamma factor is not considered at all. why would the gamma factor drop off? Does this rule apply to any four momentum problem?
 
Physics news on Phys.org
First of all, you have the wrong expression for the gamma factor, i.e., you have written ##\gamma = 1 - v^2/c^2## when it should be ##\gamma = 1/\sqrt{1-v^2/c^2}##. That it falls out from the expression for ##P^2## is basic algebra from there.
 
  • Like
Likes bonbon22
Orodruin said:
First of all, you have the wrong expression for the gamma factor, i.e., you have written ##\gamma = 1 - v^2/c^2## when it should be ##\gamma = 1/\sqrt{1-v^2/c^2}##. That it falls out from the expression for ##P^2## is basic algebra from there.
If i had this other scenario where one proton is smashing into another which is stationary. Which creates a new particle, also stationary. Then balancing the four momentum i get P1 + P2 = P3 squaring i get P1^2 + P2^2 +P1.P2 =P3^2 . Since particle 2 let's say in this case is stationary the v2 becomes zero so using the Lorentz factor equation plugging in i get gamma 2 = 1. So is it possible then for the P1.P2 term to lose the gamma1 factor?
 
bonbon22 said:
If i had this other scenario where one proton is smashing into another which is stationary. Which creates a new particle, also stationary.
This would violate conservation of momentum as you would have non-zero momentum before the collision and zero momentum after.

bonbon22 said:
P1^2 + P2^2 +P1.P2 =P3^2
It should be ##p_1^2 + p_2^2 + 2p_1 \cdot p_2 = p_3^2##.
bonbon22 said:
So is it possible then for the P1.P2 term to lose the gamma1 factor?
It is not clear to me exactly what you are asking here.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top