(adsbygoogle = window.adsbygoogle || []).push({}); gamma matrix trace Paradox??

Hello, i tried to evaluate this particular little guy:

[tex]\text{Tr} (\gamma ^0 p_\mu \gamma ^\mu \gamma ^0 q_\nu \gamma ^\nu )[/tex]

using these identities:

[tex]\gamma^0 \gamma^0 = I[/tex]

[tex]\text{Tr} (\gamma^\mu \gamma^\nu \gamma^\rho \gamma^\sigma) = 4 (g^{\rho \sigma} g^{\mu \nu} - g^{\nu \sigma} g^{\mu \rho} + g^{\mu \sigma}g^{\nu \rho} ) [/tex]

[tex] \text{Tr} (\gamma^\mu\gamma^\nu) = 4\eta^{\mu\nu} [/tex]

[tex] g^{00} = 1, \quad g^{ii} = -1 [/tex]

using that second relation, I get:

[tex] p_\mu q_\nu \text{Tr} (\gamma ^0 \gamma ^\mu \gamma ^0 \gamma ^\nu ) = p_\mu q_\nu 4 (g^{0\mu} g^{0 \nu} - g^{0 0} g^{\mu \nu } + g^{\mu 0}g^{\nu 0} ) = [/tex]

[tex] p_\mu q_\nu (8\delta ^{0\mu}\delta ^{0\nu} - 4g^{\mu \nu } ) = 4p^0q^0 + 4\vec{q}\cdot \vec{p}[/tex]

Using the first and third, and the fact the traces are invariant under cyclic permutations of matrices.

[tex]p_\mu q_\nu\text{Tr} (\gamma^0 \gamma ^0 \gamma ^\mu \gamma ^\nu ) = p_\mu q_\nu 4g^{\mu \nu } = 4p^0q^0 - 4\vec{q}\cdot \vec{p}[/tex]

What happened?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Gamma matrix trace Paradox?

**Physics Forums | Science Articles, Homework Help, Discussion**