Gaseous Chemical Reactions and Volumes

AI Thread Summary
In the discussion on gaseous chemical reactions, a user initially struggles to calculate the volume of water vapor produced from the reaction of hydrogen and oxygen. The user mistakenly overlooks the limiting reagent, which is oxygen, leading to an incorrect calculation. After reevaluating the problem, they determine that the correct volume of water vapor produced is 200 mL, based on the stoichiometric relationship in the reaction. The conversation highlights the importance of identifying the limiting reagent and suggests using Avogadro's law for simpler calculations. Ultimately, the user acknowledges the unnecessary complexity of their initial approach and expresses gratitude for the guidance received.
danielakkerma
Messages
230
Reaction score
0
(Hi everyone! Apologising for the trivial(and likely boring) question in advance. Sadly, it has me boggled for some reason).

Homework Statement


In a certain temperature and under a pressure, 500 mL of H2, and 100 mL of O2 are poured into a container. A Chemical reaction occurs as follows:
2H_2+O_2 \rightarrow 2H_2O (g)
Find the volume of the water vapour released in the reaction, with the same pressure and temperature.

Homework Equations


(My physical inclination): Conservation of Mass...

The Attempt at a Solution


Since no mass, of any element, is lost during this process, the right-hand and left-hand sides of the equation must equal, when considering their respective mass input.
So:
<br /> 2\cdot x\cdot m^{&#039;}_{H_2}+y\cdot m^{&#039;}_{O_2} = 2\cdot z\cdot m^{&#039;}_{H_2O}<br />
(m' denotes the respective molar mass. x, y, z, mole counts, derived below).
Since I know the Physical conditions to be constant during process, I take arbitrary Pressure, and Temperature (P, T), to obtain:
x_i = \frac{pV_i}{RT}
Therefore:
<br /> 2 \frac{pV_1}{RT}m^{&#039;}_{H_2}+\frac{pV_2}{RT}m^{&#039;}_{O_2}=2\frac{pV_3}{RT}m^{&#039;}_{H_2O} <br />
As expected, I lose my P/RT, to find:
<br /> 2 m^{&#039;}_{1}\cdot V_1+m^{&#039;}_{2}\cdot V_2 = 2m^{&#039;}_{3}\cdot V_3<br />
Therefore, solving for V_3:
V_3 = \frac{2 m^{&#039;}_{1}\cdot V_1+m^{&#039;}_{2}\cdot V_2}{2m^{&#039;}_{3}} \approx 144.44 mL \\<br /> m^{&#039;}_{1} \Rightarrow H_2 = 2\frac{g}{mol} \\ <br /> m^{&#039;}_{2} \Rightarrow O_2 = 32\frac{g}{mol} \\ <br /> m^{&#039;}_{3} \Rightarrow H_2O = 18\frac{g}{mol} <br />
Yet, I fear, this is not the correct answer!
What have I done wrong?
Thankful, as always, for your attention,
Daniel
 
Physics news on Phys.org
Sorry guys and gals for bumping this, but I've ascertained the correct answer to be 200 mL and I still can't figure out how to get it!
Any help would be greatly appreciated,
Beholden,
Daniel
 
Okay folks, solution at hand!
My mistake was rooted in the fact that I didn't consider who the limiting reagent was, in this question.
By calculating with the given volumes I find that \frac{n_{H_2}}{n_{O_2}} = 5 &gt; 2(n -> number of moles), meaning that O2 will form my constraint. It will have run out before the sequestration of all the Hydrogen in the system.
Therefore, the amount of Water vapour produced will depend solely on the amount of Oxygen invested in the reaction.
Thus: n_{O_2} = \frac{PV_{O_2}}{RT} \\<br /> 1 n_{O_2} \rightarrow 2 n_{H_2O} \\<br /> \frac{2PV_{O_2}}{RT}m^{&#039;}_{H_2O} = \rho_{H_2O}V_{H_2O} \text{ (Conservation of mass)} \\<br /> \rho = \frac{m^{&#039;}P}{RT} \\ <br /> \frac{2PV_{O_2}}{RT}m^{&#039;}_{H_2O} = \frac{m^{&#039;}_{H_2O}P}{RT}V_{H_2O} \\<br />
Pm'(H20)/RT is lost, to finally yield:
V_{H_2O} = 2V_{O_2} = 200 mL which is indeed the right answer!
Thanks for your attention everyone,
And I hope this helps someone else, with similar difficulties.
 
Limiting reagent first, but then you did a lot of completely unnecessary work - Avogadro's law tells us ratio of volumes (measured at the same P,T) is identical to the ratio of numbers of moles. This makes the exercise trivial.
 
Thanks Borek... that'll really come in handy.
(The Mathematical sirens in me decided to lure me into a pointless exercise in variables and &c). :D.
Of course, in hind sight, applying Avogadro is the only rational way to go, as you say.
Will keep it simpler, from now on.
Thank you!
 
I don't get how to argue it. i can prove: evolution is the ability to adapt, whether it's progression or regression from some point of view, so if evolution is not constant then animal generations couldn`t stay alive for a big amount of time because when climate is changing this generations die. but they dont. so evolution is constant. but its not an argument, right? how to fing arguments when i only prove it.. analytically, i guess it called that (this is indirectly related to biology, im...
Back
Top