Logarythmic
- 277
- 0
I have been told that using a metric
g_{00} = -a^2(\eta)(1+2\psi)
g_{oi} = g_{i0} = a^2(\eta)\omega_i
g_{ij} = a^2(\eta) \left[(1+2\phi)\gamma_{ij} + 2\chi_{ij} \right]
and a gauge transformation
x^{\bar{\mu}} = x^{\mu} + \xi^{\mu}
with
\xi^0 = \alpha
\xi^i = \beta^j
gives the changes in the amplitude as
\delta \psi = \alpha' + \frac{a'}{a} \alpha
and so on.
But how do I calculate these changes? How do I start?
g_{00} = -a^2(\eta)(1+2\psi)
g_{oi} = g_{i0} = a^2(\eta)\omega_i
g_{ij} = a^2(\eta) \left[(1+2\phi)\gamma_{ij} + 2\chi_{ij} \right]
and a gauge transformation
x^{\bar{\mu}} = x^{\mu} + \xi^{\mu}
with
\xi^0 = \alpha
\xi^i = \beta^j
gives the changes in the amplitude as
\delta \psi = \alpha' + \frac{a'}{a} \alpha
and so on.
But how do I calculate these changes? How do I start?