Gauss Law- Conducting and Non-conducting cylindrical shells

AI Thread Summary
The discussion focuses on applying Gauss's Law to determine the electric field in various regions around a uniformly charged non-conducting rod and a surrounding conducting pipe. For the region inside the rod (0 < r < R), the electric field is derived as E = λ1/(2πrε0), while for the region between the rod and the pipe (R < r < a), the electric field remains the same as in the first region due to the hollow space. In the conducting pipe (a < r < b), the electric field is zero because the charges redistribute on the surface, and for r < b, the calculation of the electric field must consider the total charge enclosed. The conversation emphasizes the importance of understanding the charge distribution and Gaussian surfaces in correctly applying the principles of electrostatics.
Samnolan1031
Messages
4
Reaction score
0

Homework Statement


hnzXRls.jpg

Below is a diagram of an infinitely long non-conducting rod of radius, R, with a uniform continuous charge distribution. The uniform linear charge density of this line is lamba1. The rod is at the center of an infinitely long, conducting pipe. The linear charge density of the pipe is lamba2.
The distance from the center of the rod to the inner surface of the pipe is a and the distance between the center of the rod to the outer surface of the pipe is b. Assign r as the shortest distance from the center of the rod to an arbitrary point.
a) what is the electric field at 0<r<R
b) what is the electric field at R<r<a?
c) what is the electric field at a<r<b?
d) what is the electric field at r<b?

Homework Equations


Gauss's Law:[/B]
integral of E*da=qenc/Eo
Density of lamba 1=Q/L
Density of lamba 2=Q/V

The Attempt at a Solution


a) E*dA=qenc/Eo
E*(2pirL)=lamba1*L/Eo
E=lamba1*L/2pi*r*L*Eo
E=lamba1/2pi*r*Eo

b) the answer would the same as answer a because it is asking for the hollow space.
c) the electric field would be 0 because the pipe is conducting.
d)
E*dA= (E1+E2)/Eo
E= (E1+E2)/Eo * 1/2pir^2

Are my answers correct so far? Thank you!
 

Attachments

  • hnzXRls.jpg
    hnzXRls.jpg
    28 KB · Views: 3,303
Physics news on Phys.org
Samnolan1031 said:

The Attempt at a Solution


a) E*dA=qenc/Eo
E*(2pirL)=lamba1*L/Eo
No; remember that the inner rod has uniform charge density. So what will be Q(r)?
E=lamba1*L/2pi*r*L*Eo
E=lamba1/2pi*r*Eo
The E field is not infinite at r=0 is it?
b) the answer would the same as answer a because it is asking for the hollow space.
c) the electric field would be 0 because the pipe is conducting.
d)
E*dA= (E1+E2)/Eo
E= (E1+E2)/Eo * 1/2pir^2
OK for (b) and (c) but (d) has the wrong dimensions so can't be right.
 
Your equations are hard to read. Please
Samnolan1031 said:
) the answer would the same as answer a because it is asking for the hollow space.
This is incorrect thinking. The charge enclosed by the Gaussian surface in (a) varies with r whereas in (b) the enclosed charge is constant. Don't you think this should make a difference to the electric field? In fact the answer you gave for (a) is incorrect but it is correct for (b).
Samnolan1031 said:
d) what is the electric field at r<b?
This should be r > b otherwise it doesn't make sense as a separate question.
 
kuruman said:
Your equations are hard to read. Please

This is incorrect thinking. The charge enclosed by the Gaussian surface in (a) varies with r whereas in (b) the enclosed charge is constant. Don't you think this should make a difference to the electric field? In fact the answer you gave for (a) is incorrect but it is correct for (b).

This should be r > b otherwise it doesn't make sense as a separate question.

Hello, thank you for your help.
In class we did a problem where the charge enclosed varies by r and these are the steps we took. In this problem, the radius of the pipe was 10cm, but the radius of the charge was 5cm. To find the charge enclosed we compare the densities of the pipe versus the density of the charge enclosed, then solved for charge enclosed.
1SRKuh7.jpg

So would I do the same thing for part a?

This was the only problem I've done where we are looking at a charge enclosed in the rod, so to me it would make sense to computationally do something similar to find the q enclosed in part a.

Thank you again for your help.
 

Attachments

  • 1SRKuh7.jpg
    1SRKuh7.jpg
    34 KB · Views: 1,266
Samnolan1031 said:
So would I do the same thing for part a?
No. The example in the photograph looks like a spherical distribution is involved. Don't try to copy from another solution, just reason it out. In part (a) you have
Samnolan1031 said:
E*(2pirL)=lamba1*L/Eo
The left side of the equation is OK. The right side of the equation should be ##q_{encl.}/\epsilon_0##. So now think, (a) what is your Gaussian surface and (b) how much charge does it enclose? Draw a drawing if necessary.
 
kuruman said:
No. The example in the photograph looks like a spherical distribution is involved. Don't try to copy from another solution, just reason it out. In part (a) you have

The left side of the equation is OK. The right side of the equation should be ##q_{encl.}/\epsilon_0##. So now think, (a) what is your Gaussian surface and (b) how much charge does it enclose? Draw a drawing if necessary.

Okay thank you.

Quick question as I am working on this. The charge enclosed can only be 0 if this was a conducting rod, right? I know if this was a conducting rod, the charge enclosed would be 0, making the electric field 0. But, is there any instance where a charge enclosed can be 0 in a non conducting surface?
 
Samnolan1031 said:
Quick question as I am working on this. The charge enclosed can only be 0 if this was a conducting rod, right?
Yes. If you had a conducting cylinder the charge will all be on its surface so the charge enclosed by a Gaussian cylinder of radius r < a would be zero. You can also have a non-conducting cylinder with charge pasted only on its surface in which case the electric field will also be zero for r < a.
 
kuruman said:
Yes. If you had a conducting cylinder the charge will all be on its surface so the charge enclosed by a Gaussian cylinder of radius r < a would be zero. You can also have a non-conducting cylinder with charge pasted only on its surface in which case the electric field will also be zero for r < a.
Thank you, that makes a lot of sense.

Since it's inside the rod, the gaussian surface of the charge would enclose less than the total charge of the rod.
So wouldn't it be
E×2πrL= (πLr^2)/(εR^2)
Which would make E=(λ1×r)/(2πεR^2)
Is this correct?
 
Samnolan1031 said:
Thank you, that makes a lot of sense.

Since it's inside the rod, the gaussian surface of the charge would enclose less than the total charge of the rod.
So wouldn't it be
E×2πrL= (πLr^2)/(εR^2)
Which would make E=(λ1×r)/(2πεR^2)
Is this correct?
That is correct except you have a π on the right hand side of the equation that does not belong. It has correctly disappeared from the bottom equation. Also note that the electric field is correctly zero when r = 0, which addresses the point that @rude man raised in post #2.
 
Back
Top