(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

A long, solid, non-conducting cylinder of radius 8 cm has a non-uniform volume density, ρ, that is a function of the radial distance r from the axis of the cylinder. ρ = A*r2 where A is a constant of value 2.9 μC/m5.

What is the magnitude of the electric field 7 cm from the axis of the cylinder?

2. Relevant equations

Volume of a cylinder: pi*L*R^2

Gauss' Law: ∫ E·dA = E(pi*L*R^2) = Q_{inside}*ε_{0}

3. The attempt at a solution

ρ = A*r2 = (2.9x10^-6)*0.7^3 = 1.421e-8

ρV = (1.421x10^-8)* pi*0.7^2 = 2.18745955e-10

E = (Q_{inside}*pi*r^2)/ε_{0}= 5.433109096 N/C

That does not look right at all to me, and I am not sure where my set up went wrong. Its obvious to me that I did not need the length of the cylinder so I ommited L (actually assumed a value of 1). Did I get the volume correct?

**Physics Forums - The Fusion of Science and Community**

# Gauss' Law: Solid Non-conducting Cylinder

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

- Similar discussions for: Gauss' Law: Solid Non-conducting Cylinder

Loading...

**Physics Forums - The Fusion of Science and Community**