Gauss's Law and nonconducting spherical shell

AI Thread Summary
Using Gauss's law, the electric field inside a nonconducting spherical shell (R1 < r < R2) can be expressed as E = [ρ(R1)^3]/[3(ε_0)(r^2)], while outside the shell (r > R2), it is E = [ρ(R1)^3 + ρ(R2)^3]/[3(ε_0)(r^2)]. The discussion highlights the importance of correctly applying Gauss's law to derive these equations based on the uniform volume charge density ρ. Participants express uncertainty about the calculations and seek clarification on the steps involved. Overall, the focus remains on accurately determining the electric field in relation to the spherical shell's geometry and charge distribution.
Edasaur
Messages
5
Reaction score
0

Homework Statement



A nonconducting spherical shell of inner radius R1 and outer radius R2 contains a uniform volume charge density ρ throughout the shell. Use Gauss's law to derive an equation for the magnitude of the electric field at the following radial distances r from the center of the sphere. Your answers should be in terms of ρ, R_1, R_2, r, ε_0, and π.

a) R_1 < r < R_2
b) r > R_2

Homework Equations


∫E dA = Q_enc/ε_0


The Attempt at a Solution



For a), I tried using Gauss's law to find it and I arrived at:

E = [ρ(R_1)^3]/[3(ε_0)(r^2)]

For b), I also used Gauss's law to find:

[ρ(R_1)^3 + ρ(R_2)^3]/[3(ε_0)(r^2)]


I'm not quite sure what I'm doing wrong...
 
Physics news on Phys.org
Edasaur said:

Homework Statement



A nonconducting spherical shell of inner radius R1 and outer radius R2 contains a uniform volume charge density ρ throughout the shell. Use Gauss's law to derive an equation for the magnitude of the electric field at the following radial distances r from the center of the sphere. Your answers should be in terms of ρ, R_1, R_2, r, ε_0, and π.

a) R_1 < r < R_2
b) r > R_2

Homework Equations


∫E dA = Q_enc/ε_0


The Attempt at a Solution



For a), I tried using Gauss's law to find it and I arrived at:

E = [ρ(R_1)^3]/[3(ε_0)(r^2)]

For b), I also used Gauss's law to find:

[ρ(R_1)^3 + ρ(R_2)^3]/[3(ε_0)(r^2)]

I'm not quite sure what I'm doing wrong...
It's difficult to say what you are doing wrong, without having you give more detail regarding your steps in arriving at those solutions.
 
A non-conducting spherical shell carries a non-uniform charge density ρ=ρ0r1/r. Determine the electric field in the regions:
A) 0<r<r1
B)r1<r<r0
C)r>r0

r1 is radius to inside of shell. r0 is radius to outside of shell.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top