General Equation of the Line of the Major Axis of an Ellipse

Hugo S
Messages
3
Reaction score
0
This is a question I have been playing with this week out of curiosity but I keep coming up against brick walls and unenlightening results.

Given the equation of an ellipse, say $$ x^{2} - xy + y^2 = 2, $$ I would like to find the equation of the line which passes through the major axis.

I tried solving for x and y and applying a rotation matrix. Doing so, I found that

$$x' = \cos \theta (-\sqrt{8-3y^2} - y) + \sin \theta (-\sqrt{8 - 3x^2} - x) $$
$$y' = \sin \theta (\sqrt{8-3y^2} + y) + \cos \theta (-\sqrt{8 - 3x^2} - x). $$

Setting the second equation to equal zero and solving in terms of θ I ended up with the result: $$ \tan \theta = \frac{\sqrt{8-3x^2} + x}{\sqrt{8-3y^2 + y}}. $$

This result doesn't seem to help me as it is ultimately telling me something very trivial that I already know about the relationship between x and y coordinates and the tan function.

I know that my choice of coordinates might not be particularly strategic. Are there any other mistakes I'm making in how I'm approaching this?

Thank you!
 
Mathematics news on Phys.org
You may be able to make better progress by being carefull about describing what you are doing. i.e.:

What are x' and y' and ##\theta##?

What is the trivial thing the tan equation ends up telling you?
What is it you hoped it would tell you?

Have you seen.:
http://www.maa.org/external_archive/joma/Volume8/Kalman/General.html
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top