General method of determining order of poles

sachi
Messages
63
Reaction score
1
In Boas on p.595 there's an FCV proof for finding the order of a pole.
It says to write f(z) as g(z)/[(z-zo)^n] and then write g(z) as a0 + a1(z-z0) ... etc. and that we can deduce that the Laurent series for f(z) begins with (z-z0)^(-n) unless a0 = 0 i.e g(z0) = 0. Therefore the order of the pole is n. However, how can we be sure that g(z) does not contain terms of the form (z-z0)^(-n) ? Is this just by assumption?
thanks for your help.
 
Physics news on Phys.org
Definition of order of a pole: z0 is a pole of f(z) of order n if and only if (z-z0)nf(z) is analytic at z0 but (z-z0)n-1f(z) is not.
The fact that (z-z0)nf(z) is analytic means that is equal to its power series in some neighborhood of z0:
f(z)(z-z_0)^n= a_0+ a_1(z-z_0)+ a_2(z-z_0)^2+ ...
and so
f(z)= a_0(z-z_0)^{-n}+ a_1(z-z_0)^{1-n}+ a_2(z-z_0){2-n}+...

From the definition of order of a pole and the fact that an analytic function is equal to its Taylor series, it follows that the Laurent series has no term with exponent less than -n.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top