General relativity- Coordinate/metric transformations

Click For Summary
SUMMARY

The discussion centers on finding a coordinate system (t,x) such that the metric ds²=(u²-v²)(du²-dv²) transforms to the Minkowski form ds²=dt²-dx². Participants explore the general coordinate transformation formula, ds²=gabdxadxb, and derive the new metric components using partial derivatives. The conversation highlights the importance of explicitly writing out transformation equations and suggests using "comma" notation for brevity in expressing partial derivatives.

PREREQUISITES
  • Understanding of general relativity and metric tensors
  • Familiarity with coordinate transformations in differential geometry
  • Proficiency in using LaTeX for mathematical expressions
  • Knowledge of partial differential equations (PDEs)
NEXT STEPS
  • Study the process of general coordinate transformations in general relativity
  • Learn how to derive and solve partial differential equations related to metric transformations
  • Explore the use of "comma" notation in expressing derivatives for clarity
  • Investigate the implications of diagonal metrics in simplifying transformations
USEFUL FOR

Students and researchers in theoretical physics, particularly those focusing on general relativity and differential geometry, as well as anyone interested in the mathematical foundations of spacetime metrics.

jgarrel
Messages
2
Reaction score
0

Homework Statement


Consider the metric ds2=(u2-v2)(du2 -dv2). I have to find a coordinate system (t,x), such that ds2=dt2-dx2. The same for the metric: ds2=dv2-v2du2.

Homework Equations


General coordinate transformation, ds2=gabdxadxb

The Attempt at a Solution


I started with a general transformation xa→x'a so the new metric is g'μν=gab(dxa/dx'μ)(dxb/dx'ν). The components of g (old metric) and g'(new metric) are known and the unknowns are the derivatives of the old coordinates with respect to the new ones. That's where I'm stuck.
 
Physics news on Phys.org
jgarrel said:
I started with a general transformation xa→x'a so the new metric is g'μν=gab(dxa/dx'μ)(dxb/dx'ν).
Those derivatives should be partial derivatives. Write it in latex like this: $$g'_{\mu\nu} ~=~ g_{ab}\, \frac{\partial x^a}{\partial x'^\mu} \, \frac{\partial x^b}{\partial x'^\nu} ~.$$ (Look under the Info->Help/How-To menu to find a Latex primer. You'll need to master at least basic latex on this forum.)

Both metrics are diagonal, which makes it reasonably easy to write out the above transformation equations more explicitly.

I.e., write it out explicitly (where ##\mu,\nu## are ##t,x## and ##a,b## are ##u,v##). You should get 2 partial-differential equations where each right hand side has 2 terms. I'll wait to see if you can get that far before giving more hints.
 
Thanks for the reply!
I already had ended up with these two differential equations, but I thought there was another way, because they seem difficult to solve. I put them here:

##1=(u^2-v^2) \frac {\partial^2 u} {\partial t^2} -(u^2-v^2) \frac {\partial^2 v} {\partial t^2}##

##-1=(u^2-v^2) \frac {\partial^2 u} {\partial x^2} -(u^2-v^2) \frac {\partial^2 v} {\partial x^2}##
 
Try writing out the corresponding PDEs for the inverse transformation first. I.e., treating ##t,x## as functions of ##u,v##. They turn out a bit easier.

Btw, if those partial derivatives become too tedious to keep writing out fully in latex, you can always use the briefer "comma" notation, e.g., $$ \frac{\partial u}{\partial t} ~\equiv~ u,_t ~~;~~~~ \mbox{and}~~~~~~ \frac{\partial^2 u}{\partial t^2} ~\equiv~ u,_{tt} ~~;~~~~ \mbox{(etc)}.$$
 
  • Like
Likes   Reactions: jgarrel

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 37 ·
2
Replies
37
Views
6K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K