General Solution to System of Equations w/o Eigenvalues

hbomb
Messages
57
Reaction score
0
I have a question that involves a system of equations that I can't figure out

Give the general solution of the set of equations below:

x'=2x
y'=-x+3y
z'=2x-4y+6z

Hint: While you can use eigenvalues and eigenvectors for this one, there is an easier way to do it.

That's where I'm stuck, I know how to do this using the eigenvalues and eigenvectors.

This is a lower triangular matrix, so the eigenvalues are 2, 3, 6. But what's the other way of doing this?
 
Physics news on Phys.org
If x'=2x, what does x equal?

Plug that into the x for y' = -x + 3y, and solve for y.

Do the same for z then.

I find it a bit disconcerting that you have posted so many problems about these types of things, you may want to ask your professor to go over exactly what you're doing, since it looks like you just memorized the matrix formula and left it at that
 
Yea, he's very vague on some of these topics. He gives examples of finding determinants of matrices and finding eigenvalues and eigenvectors, but he never showed how to solve a system of equations with a given point.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top