Generate All Permutations of Sn from An and 1 Odd Permutation

  • Thread starter Thread starter gravenewworld
  • Start date Start date
  • Tags Tags
    Group Permutation
gravenewworld
Messages
1,128
Reaction score
27
say you have the alternating group An for some permutation group Sn. If you are given An and then 1 odd permutation, must you be able to generate all of Sn? I tried it for S3 and I multiplied all the even perms in S3 by only 1 element that wasn't in A3 and was able to generate all of S3. Does this hold for any n?
 
Last edited:
Physics news on Phys.org
Yes, that is generally true.
Note that in any group multiplication on the left by an element in the group is a bijection.
ax=b \iff x=a^{-1}b
Use this to prove it for the general case S_n ,n\geq 2
The case n=1 is special, since the A1=S1.
 
Alright thanks a lot galileo. I just wanted to be sure of that fact before I brought it up in my presentation that I have to give.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top