I Generating Aperiodic Tilings with Plane Waves

cuallito
Messages
94
Reaction score
1
Hello, I saw an applet awhile ago during a late-night mathematical web-surfing marathon that used the addition of plane waves at different angles to generate aperiodic tilings (like the penrose tiling.) I haven't been able to find it again. I'm trying to make my own version of it, using the same idea.

Code:
xmin = -10; (*Min X coord to graph*)
xmax = 10; (*Max X coord to graph*)
ymin = -10; (*Min Y coord to graph*)
ymax = 10; (*Max Y coord to graph*)
rez = 300; (*Graph resolution*)
sym = 8; (*Directions of symmetry*)
v = 2*Pi*(Sin[i*2*Pi]*x + Cos[i*2*Pi]*y);
Sinu = Cos[v];
P = N[Sum[Sinu, {i, 0, (sym - 1)/sym, 1/sym}]]
MatrixPlot[ Table[P, {x, xmin, xmax, (xmax - xmin)/rez}, {y, ymin,   ymax, (ymax - ymin)/rez}]]

It works like a charm for even numbers of symmetry (change the 'sym' variable to play around with different fold symmetries), but for odd numbers of 'sym' it generates patterns with 2*sym-fold symmetry. I've tried everything, like using Exp[i*v] instead of Cos[v], varying the phase between each of the component waves, and even using Sinu=Cos[v]*UnitStep[v] to stop from getting 'extra' interference, but none of them gives me the correct result for odd numbers :( Help!?
 
Mathematics news on Phys.org
By construction, your pattern is symmetric for x-> -x, y-> -y, your v changes its sign and cosine is an even function. You cannot produce odd symmetry with it. Using Sinu=Sin[v] might work for odd symmetries.
 
For some reason, using a clipped Sine function seems to work:

Anyone know why? A regular sine function just creates the double symmetry problem again.

Code:
xmin = -10;
xmax = 10;
ymin = -10;
ymax = 10;
rez = 400;
sym = 5;
v = 2*Pi*(Sin[i*2*Pi]*x + Cos[i*2*Pi]*y);
Sinu = Max[Sin[ v], 0];
P = Sum[Sinu, {i, 0, (sym - 1)/sym, 1/sym}];
MatrixPlot[ Table[N[P], {x, xmin, xmax, (xmax - xmin)/rez}, {y, ymin,   ymax, (ymax - ymin)/rez}]]

penrose.png
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top