Generators of Modular Prime Systems

Chu
Messages
9
Reaction score
0
Hello all, I am currently writing a program where I need to find a generator in VERY large modular prime systems, where p can be anywhere up to 2^1024. Is there an efficent (i.e. hopefully polynomial time on the number of bits) way to do this? For example, the current system I am working in is modulo 177230489166282344015774064377241227587199382967408813262382504707219711331089796381062272830832589652763240077045179410289089586103444172644783259989800867240412448988509325574574304033723512809384370865286355935760236734502077616148946269402098233368030784437031602201910267514742358461638753758087223301499. I am wondering how long it would take to find a generator on a modern system . . .
 
Physics news on Phys.org
Chu said:
Hello all, I am currently writing a program where I need to find a generator in VERY large modular prime systems, where p can be anywhere up to 2^1024. Is there an efficent (i.e. hopefully polynomial time on the number of bits) way to do this? For example, the current system I am working in is modulo 177230489166282344015774064377241227587199382967408813262382504707219711331089796381062272830832589652763240077045179410289089586103444172644783259989800867240412448988509325574574304033723512809384370865286355935760236734502077616148946269402098233368030784437031602201910267514742358461638753758087223301499. I am wondering how long it would take to find a generator on a modern system . . .

What do you mean by generator? Why wouldn't 2 work?
 
NateTG said:
What do you mean by generator? Why wouldn't 2 work?

After doing some looking I sort of found the way to do this (i.e. reduce it to a much simpler problem). If g is a gerator for a system modulo P, then all p in P can be represented as g^n.

For example, in Z_7, the powers of 2 are:

2, 4, 8=1, 2

i.e. we have a cyclic group of order 3 so 2 is not a generator.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top