forevergone
- 49
- 0
I was wondering about this when it hit me, can a sequence ever be both arithmetic and geometric?
I was thinking maybe a sequence like 0, 0, 0, 0... or 1, 1, 1, 1... where it's constant but I don't know thoroughly if there are any restrictions on arithmetic and geometric sequences that prohibit situations like these.
Could this be possible?
My second question is: An arithmetic sequence with general term A(n), n>=1 has the sum of the first two terms 5 and the sum of third and fourth terms 17. Find \sum_{i=1}^{10}{Ai}
I don't really have an idea of how to approach this.
We know that:
A1 + A2 = 5
A3 + A4 = 17
But in the arithmetic sequence, how would you find a or d?
I was thinking maybe a sequence like 0, 0, 0, 0... or 1, 1, 1, 1... where it's constant but I don't know thoroughly if there are any restrictions on arithmetic and geometric sequences that prohibit situations like these.
Could this be possible?
My second question is: An arithmetic sequence with general term A(n), n>=1 has the sum of the first two terms 5 and the sum of third and fourth terms 17. Find \sum_{i=1}^{10}{Ai}
I don't really have an idea of how to approach this.
We know that:
A1 + A2 = 5
A3 + A4 = 17
But in the arithmetic sequence, how would you find a or d?
Last edited: