Sean O
- 4
- 0
Is it possible to find the partial sum equation for (2^m - 1)/3^m, from m=0 to m=n-1?
I know that I'm supposed to rearrange the expression into the format ar^m, so the exponent m must only be on the value r, and not on the constant a. So far the farthest I've gotten is to rearrange it into (2/3)^m - (1/3)^m, but I have no idea what to do from there. I'm also not sure how I would go about proving that this expression can't be made into a partial sum, if it turns out it isn't possible.
Any input or hints would be a big help.
I know that I'm supposed to rearrange the expression into the format ar^m, so the exponent m must only be on the value r, and not on the constant a. So far the farthest I've gotten is to rearrange it into (2/3)^m - (1/3)^m, but I have no idea what to do from there. I'm also not sure how I would go about proving that this expression can't be made into a partial sum, if it turns out it isn't possible.
Any input or hints would be a big help.