Given a linear transformation, determine matrix A

WK95
Messages
139
Reaction score
1

Homework Statement


LPE6kM6.png



Homework Equations



The Attempt at a Solution


What is M_2 supposed to be? Is A supposed to be the matrix that produces those above linear transformations?
 
Physics news on Phys.org
pretty much, yes. can you determine what the matrix is?
 
WK95 said:

Homework Statement


LPE6kM6.png



Homework Equations



The Attempt at a Solution


What is M_2 supposed to be? Is A supposed to be the matrix that produces those above linear transformations?
M2(R) is the set of 2 X 2 matrices with elements from the field of real numbers. Other notation I've seen is M2x2.
 
Once a basis has been specified, each linear transformation has a unique matrix representation. Think about the vectors that they gave you ##L## acting on. Do they form a basis? If so, how would they be linked to the form of the matrix?
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top