Given Sound-Level B1 at A Distance D1, Find D2 at Sound Level B2

  • Thread starter Thread starter antiderivativ
  • Start date Start date
  • Tags Tags
    Sound
AI Thread Summary
To reduce the sound level from 120 dB to 80 dB, the listener must move to a distance of approximately 4.45 m from the pneumatic chipper. The inverse square law indicates that sound intensity decreases with the square of the distance, but the logarithmic nature of the decibel scale complicates direct calculations. A 40 dB reduction corresponds to a sound intensity that is 10,000 times quieter, which must be factored into the calculations. The correct approach does not require adding the initial distance to the calculated distance, as D2 represents the total distance from the sound source. Ultimately, the calculations confirm that a significant increase in distance is necessary to achieve a comfortable sound level.
antiderivativ
Messages
17
Reaction score
0
I'm here to check my work again. I hope you don't mind. I'm going to try to check as many as I can today. :)

The sound-level 2.0 m from a pneumatic chipper is 120 dB. Assuming it radiates uniformly in all directions, how far from it must you be in order for the level to drop 40 dB down to something more comfortable?
Given:
D1 = 2.0 m
B1 = 120 dB
D2 = x
B2 = 80 dB
Find x. I decided I could use the inverse square law. As the distance increases, the energy decreases in proportion to the distance squared.

\frac{B1}{B2} = \frac{D2^2}{D1^2}

\frac{120}{80} = \frac{x^2}{4}
x= sqrt((120*4)/80) = 2.4495 m.

In order to hear 40 dB less, I need to walk 2.4495 m from my current distance. The total distance I stand from the chipper is 2 +2.4495 = 4.4495 m. Am I correct?
 
Physics news on Phys.org
B1/B2=D12/D22 only works if all four values are measured on a linear scale. Since the decibel scale is logarithmic, it doesn't work.

40 decibel is 4 bels, which corresponds to a factor of 10^4=10000. So the sound needs to be 10 000 times quieter. Now you can use that formula, but don't add your initial distance to D2. D2 is already the listener's distance from the sound source.
 
I'm sorry I don't understand how what you have told me allows me to use the inverse square law, so I will try it using the normal equations. However, thanks for pointing out that I do not have to add the D1 and D2. You say 104=10000 will allow me to use my inverse square law. I understand that you're saying that because 10 to the power of something relates to log. When you say 10log(something), it equals that something. However, I don't see how a conversion to bells in this manner helps. Thanks, though.

Using B = 10log(I/Io)

120dB = 10log(I/(1x10-12)
I = 1 W/m2

4-1.jpg
 
80 = 10 log(I/10-12) = 10-4 W/m2
120 = 10 log(I/10-12) = 1 W/m2

P = 4\pi*r2
P = 4\pi*22 = 50.27

r = \sqrt{\frac{P}{I*4*\pi}}
r = \sqrt{\frac{50.27}{I*4*\pi}} = 200 m
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top