jonroberts74
- 189
- 0
Homework Statement
find the global extrema on the disc x^2 + y^2 \le 1
given the function f(x,y)=xy+5y
The Attempt at a Solution
For the interior of the disc
\nabla f = <y,x+5>
the critical point is (0,-5)
for the boundary of the disc
using lagrange multipliers
\left\{\begin{array}{cc}y=\lambda 2x \\ x+5 = \lambda 2y \\ x^2+y^2 =1 \end{array}\right.
solving for lambda
\lambda = \frac{y}{2x}; \lambda = \frac{x+5}{2y}
\frac{y}{2x}=\frac{x+5}{2y} \Rightarrow y = \pm \sqrt{x(x+5)}
now,
x^2 + (\pm \sqrt{x(x+5)})^2 = 1 \Rightarrow x = \frac{1}{4}(\pm\sqrt{33}-5)
subbing the x value into
y = \pm \sqrt{x(x+5)} \Rightarrow \pm \sqrt{\frac{1}{8}(5 \sqrt{33} - 21)}
I know to test those critical points in the original function but before I go further I want to make sure I have done everything up to it correctly
Last edited: