LagrangeEuler
- 711
- 22
Nabla operator is defined by
\nabla = \sum^3_{i=1} \frac{1}{h_i}\frac{\partial}{\partial q_i}\vec{e}_{q_i}
where ##q_i## are generalized coordinates (spherical polar, cylindrical...) and ##h_i## are Lame coefficients. Why then
div(\vec{A})=\sum^3_{i=1} \frac{1}{h_i}\frac{\partial}{\partial q_i}\vec{e}_{q_i} \cdot \sum_j A_j\vec{e}_{q_j}=\sum_i\frac{1}{h_i}\frac{\partial}{\partial q_i}A_i
where I am making the mistake?
here is different definition.
https://www.jfoadi.me.uk/documents/lecture_mathphys2_05.pdf
\nabla = \sum^3_{i=1} \frac{1}{h_i}\frac{\partial}{\partial q_i}\vec{e}_{q_i}
where ##q_i## are generalized coordinates (spherical polar, cylindrical...) and ##h_i## are Lame coefficients. Why then
div(\vec{A})=\sum^3_{i=1} \frac{1}{h_i}\frac{\partial}{\partial q_i}\vec{e}_{q_i} \cdot \sum_j A_j\vec{e}_{q_j}=\sum_i\frac{1}{h_i}\frac{\partial}{\partial q_i}A_i
where I am making the mistake?
here is different definition.
https://www.jfoadi.me.uk/documents/lecture_mathphys2_05.pdf