Calculating the Gradient of a Vector Function with a Power Function

  • Thread starter Thread starter sci-doo
  • Start date Start date
  • Tags Tags
    Gradient
sci-doo
Messages
23
Reaction score
0

Homework Statement


Let f(x,y,z)= |r|-n where r = x\hat{i} + y\hat{j} + z\hat{k}

Show that

\nabla f = -nr / |r|n+2

2. The attempt at a solution
Ok, I don't care about the absolute value (yet at least).

I take partial derivatives of (xi + yj + zk)^-n and get

\nabla f = i(-n)(xi + yj + zk)^(-n-1) + j(-n)(xi + yj + zk)^(-n-1) + k(-n)(xi + yj + zk)^(-n-1)

= -n(i + j + k)*(xi + yj + zk)^(-n-1)

But according to problem statement what I should get is:
-nr / |r|n+2 = -n (i x + j y + k z)^(-1 - n)

I don't understand where the (i + j + k) term goes! :eek:
 
Physics news on Phys.org
The | | does not refer to the absolute value, but the norm in this case. In fact xi+yj+zk is a vector and it does not make sense to compute the power of a vector.

So what you have to use is that |r|=\sqrt{x^2+y^2+z^2}, then compute the partials.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top