Graphical Representation of v(t) Function

esmeco
Messages
144
Reaction score
0
I'm trying to represent graphically the following function:

v(t)=3 + 1.414cos(w0t) - 1.414sin(w0t) + 2cos(2w0t + 5pi/2)


The problem is that I'm not sure how I represent the sine and cosine both in the same graph...I know that 3 is the continuous component and the w0t equals the "x" variable...Any help on this would be much appreciated!
 
Physics news on Phys.org
Goto this web site: http://www.hostsrv.com/webmab/app1/MSP/quickmath/02/pageGenerate?site=quickmath&s1=graphs&s2=equations&s3=basic

and copy this:

y=3 + 1.414cos(x) - 1.414sin(x) + 2cos(2x + 5*pi/2)

into the box marked "Plot" and use the limits x=-2*pi to x=2*pi and y=0 to y=8 then click plot.
 
Last edited by a moderator:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top