Green’s function of Dirac operator

Click For Summary
SUMMARY

The discussion focuses on calculating the Green's function of the Dirac operator using the Feynman propagator \( S_F \) as defined in Peskin's equations (3.113) and (3.114). The derivation involves manipulating terms involving the Heaviside step function and the Klein-Gordon equation, leading to simplifications of the first and third terms while identifying the second term as zero. The challenge arises with the fourth term, which does not conform to the Klein-Gordon equation, indicating a potential issue in the calculation process.

PREREQUISITES
  • Understanding of Green's functions in quantum field theory
  • Familiarity with the Dirac operator and its properties
  • Knowledge of the Klein-Gordon equation and its implications
  • Proficiency in manipulating Heaviside step functions in mathematical expressions
NEXT STEPS
  • Study the derivation of Green's functions in quantum field theory
  • Explore the properties and applications of the Dirac operator
  • Learn about the implications of the Klein-Gordon equation in quantum mechanics
  • Investigate advanced techniques for handling distributions and singularities in field theory
USEFUL FOR

Physicists, particularly those specializing in quantum field theory, theoretical physicists working on particle physics, and students seeking to deepen their understanding of Green's functions and the Dirac operator.

Pouramat
Messages
27
Reaction score
1
Homework Statement
My question comes from the textbook by Peskin & Schroeder,

If $$S_F(x-y)$$ is Green’s function of Dirac operator, how we should verify
$$ (i {\partial}_{\mu} \gamma^{\mu} -m)S_F (x-y)= i \delta^{(4)} (x-y) . $$
!!Didn’t know how to write slashed partial!!
all of $$\partial _x$$ in my solution are slashed but I did not know how to write it.
Relevant Equations
Using $$S_F(x-y)$$ definition:
\begin{align}
S_F(x-y) &= < 0|T \psi (x) \bar\psi (y) |0> \\
& = \theta(x^0-y^0) <0|\psi (x) \bar\psi (y) |0>- \theta(y^0-x^0) <0|\bar\psi (y) \psi (x) |0>
\end{align}
I started from eq(3.113) and (3.114) of Peskin and merge them with upper relation for $S_F$, as following:
\begin{align}
S_F(x-y) &=
\theta(x^0-y^0)(i \partial_x +m) D(x-y) -\theta(y^0-x^0)(i \partial_x -m) D(y-x) \\
&= \theta(x^0-y^0)(i \partial_x +m) < 0| \phi(x) \phi(y)|0 > -\theta(y^0-x^0)(i \partial_x -m) < 0| \phi(y) \phi(x)|0 >
\end{align}
Now we can calculate Green's Function of Dirac operator using this form of $S_F$
\begin{align}
(i \partial_x -m) S_F =& [(i \partial_x -m) \theta(x^0-y^0)][(i \partial_x +m) < 0| \phi(x) \phi(y)|0 >]\\
&+\theta(x^0-y^0)[(\partial^2-m^2) <0| \phi(x) \phi(y)|0>] \\
&-[(i \partial_x -m) \theta(y^0-x^0)][(i \partial_x-m) <0| \phi(y) \phi(x)|0 >] \\
&- \theta(y^0-x^0)[(i \partial_x -m)(i \partial_x -m)< 0| \phi(y) \phi(x)|0 >]
\end{align}

All of the terms are fine except the last line.The 1st and 3rd terms simplify as following The 2nd term is zero using klein-Gordon equation
The 1st term :
\begin{equation}
[(i \partial_x -m) \theta(x^0-y^0)][(i \partial_x +m) < 0| \phi(x) \phi(y)|0 >] = [-\partial_0 \theta(x^0-y^0)][<0| \pi(x) \phi(y)|0>]
\end{equation}
The 3nd term:
\begin{equation}
[(i \partial_x -m) \theta(y^0-x^0)][(i \partial_x +m) < 0| \phi(y) \phi(x)|0 >] = [-\partial_0 \theta(y^0-x^0)][< 0| \phi(x) \pi(y)|0 >]
\end{equation}
if the 4th term like the 2nd term was Klein-Gordon equation the problem gets solved, but it isn't.
 
Last edited:

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 7 ·
Replies
7
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K