Green’s function of Dirac operator

AI Thread Summary
The discussion focuses on deriving the Green's function for the Dirac operator using equations from Peskin. The author combines the expressions for the Feynman propagator, \( S_F \), with the two-point correlation functions of the field operators. While the first and third terms simplify correctly, the second term vanishes due to the Klein-Gordon equation. The fourth term, however, does not simplify in the same manner, leading to complications in the overall calculation. This discrepancy highlights the challenges in applying the Klein-Gordon equation to all terms in the derivation.
Pouramat
Messages
27
Reaction score
1
Homework Statement
My question comes from the textbook by Peskin & Schroeder,

If $$S_F(x-y)$$ is Green’s function of Dirac operator, how we should verify
$$ (i {\partial}_{\mu} \gamma^{\mu} -m)S_F (x-y)= i \delta^{(4)} (x-y) . $$
!!Didn’t know how to write slashed partial!!
all of $$\partial _x$$ in my solution are slashed but I did not know how to write it.
Relevant Equations
Using $$S_F(x-y)$$ definition:
\begin{align}
S_F(x-y) &= < 0|T \psi (x) \bar\psi (y) |0> \\
& = \theta(x^0-y^0) <0|\psi (x) \bar\psi (y) |0>- \theta(y^0-x^0) <0|\bar\psi (y) \psi (x) |0>
\end{align}
I started from eq(3.113) and (3.114) of Peskin and merge them with upper relation for $S_F$, as following:
\begin{align}
S_F(x-y) &=
\theta(x^0-y^0)(i \partial_x +m) D(x-y) -\theta(y^0-x^0)(i \partial_x -m) D(y-x) \\
&= \theta(x^0-y^0)(i \partial_x +m) < 0| \phi(x) \phi(y)|0 > -\theta(y^0-x^0)(i \partial_x -m) < 0| \phi(y) \phi(x)|0 >
\end{align}
Now we can calculate Green's Function of Dirac operator using this form of $S_F$
\begin{align}
(i \partial_x -m) S_F =& [(i \partial_x -m) \theta(x^0-y^0)][(i \partial_x +m) < 0| \phi(x) \phi(y)|0 >]\\
&+\theta(x^0-y^0)[(\partial^2-m^2) <0| \phi(x) \phi(y)|0>] \\
&-[(i \partial_x -m) \theta(y^0-x^0)][(i \partial_x-m) <0| \phi(y) \phi(x)|0 >] \\
&- \theta(y^0-x^0)[(i \partial_x -m)(i \partial_x -m)< 0| \phi(y) \phi(x)|0 >]
\end{align}

All of the terms are fine except the last line.The 1st and 3rd terms simplify as following The 2nd term is zero using klein-Gordon equation
The 1st term :
\begin{equation}
[(i \partial_x -m) \theta(x^0-y^0)][(i \partial_x +m) < 0| \phi(x) \phi(y)|0 >] = [-\partial_0 \theta(x^0-y^0)][<0| \pi(x) \phi(y)|0>]
\end{equation}
The 3nd term:
\begin{equation}
[(i \partial_x -m) \theta(y^0-x^0)][(i \partial_x +m) < 0| \phi(y) \phi(x)|0 >] = [-\partial_0 \theta(y^0-x^0)][< 0| \phi(x) \pi(y)|0 >]
\end{equation}
if the 4th term like the 2nd term was Klein-Gordon equation the problem gets solved, but it isn't.
 
Last edited:
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top