Ground state in an infinite square well with length doubling

cpsinkule
Messages
174
Reaction score
24

Homework Statement


Assume a particle is in the ground state of an infinite square well of length L. If the walls of the well increase symmetrically such that the length of the well is now 2L WITHOUT disturbing the state of the system, what is the probability that a measurement would yield the particle in the ground state of the 2L-Well?

Homework Equations


Ground State of infinite well of length L: |ψ>= ∫√(2/L)cos(π/L*x)|x>dx from -L/2 to L/2

The Attempt at a Solution


Since the well has expanded, the current state of the system is no longer an eigenstate and needs to be renormalized because the range of integration has changed which yields
ψ=√(1/L)cos(π/l*x).
Now, the NEW ground state is just
φ=∫√(1/L)cos(π/2L*x')|x'>dx'
so the probability of finding the particle in the new ground state is just
<φ|ψ>=∫∫<x'|x>(1/L)cos(π/2L*x')cos(π/L*x)dx'dx=
∫∫δ(x'-x)(1/L)cos(π/2L*x')cos(π/L*x)dx'dx=
∫(1/L)cos(π/2L*x)cos(π/L*x)dx from -L to L
which I found to be equal to 4/3π, but the text claims the answer should be (8/3π)2! can someone point me to the mistake I've made somewhere?
 
Physics news on Phys.org
I've found my mistake! There is no need to renormalize the initial ground state because it is 0 outside the original limits! Also, The final integration should only be taken from -L/2 to L/2 for the same reason! but I still get an answer of 8/3π and NOT (8/3π)^2 like the book claims. Where does the square come from?
 
The probability is interpreted as ##|\langle \phi | \psi \rangle|^2 ## because when you sum it up for all the expansion bases, you get unity.
 
Thanks! It completely slipped my mind! LOL
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top