Ground State Wave Function for Identical Spin 1/2 Particles in a Potential Well

lion8172
Messages
27
Reaction score
0

Homework Statement


Find the wave function of the ground energy state for a system of two non-interacting, identical spin 1/2 particles in a potential well extending from x=0 to x=a. Don't forget to consider spin.

Homework Equations


The Attempt at a Solution



Since the particles are fermions, they must occupy a state that is antisymmetric with respect to particle exchange. Their wave function will be of the form \psi (r) \chi(s), where \chi is a spinor. Either the spatial part or the spin part of the wave function must be antisymmetric (and the other part must be symmetric). If the spin state is symmetric, then the particles will occupy a state in the spin triplet. Otherwise, they will occupy the singlet. At this point I am confused, however. How do we know which component of the wave function must be anti-symmetric (spatial or spin)? Moreover, if the particles are in the spin triplet, how do we know which of the three possible spin states corresponds to the lowest energy?
 
Last edited:
Physics news on Phys.org
Since we want the ground state, we want to put each particle into the single-particle state of lowest energy. So their single-particle spatial wave functions are the same. What does that tell you about spatial symmetry?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top