Group Theory Sets and Mappings

ZTV
Messages
5
Reaction score
0

Homework Statement



Prove that f: S -> T is one-to-one if and only if f(AnB) = f(A) n f(B)
for every pair of subsets A and B of S

Homework Equations



See above

The Attempt at a Solution



Part 1:

Starting with the assumption f(AnB) = f(A) n f(B)

Let f(a) = f(b) [I'm going to try and prove that a=b for one-to-one]

f(a) is an element of f(A)
f(b) is an element of f(B)
f(a) = f (b)
So
f(a) is an element of f(A) n (B)
From assumption
f(a) and f(b) are elements of f(A) n f(B) so also elements of f (AnB)

so a, b are elements of AnB

Can't work out how to show they are equal though..

2. Assume f is one-to-one

So f(a)=f(b) and a=b

If a=b, a is an element of AnB
so f(a) is an element of f(AnB)

Likewise, if f(a)=f(b) then f(a) is an element of f(A) n f(B)

Don't know where to go from here.
 
Physics news on Phys.org
For the first one, note that the assumption holds for any sets A and B. So you can choose them conveniently (hint: sets can consist of just one point).

For the second one, I suggest showing two inclusions f(A n B) c f(A) n f(B) and f(A) n f(B) c f(A n B).
One of them is trivial (if y is the image of a point x in A n B, then x is in A so it's the image of a point in A and x is in B so it's the image of a point in B, so it's definitely in f(A) and f(B)). For the other one you will need the injectivity, just write out definitions.
 
Thanks... for the second one I'd considered looking at inclusions but couldn't work out how to implement it.

Don't understand what you mean about choosing convenient sets though, can you explain?
 
Well, you have assumed (I hope, otherwise do it now :smile:) that f(AnB) = f(A) n f(B) for any subsets A and B of S, because that's what it said in the statement.

So to conclude that a = b, you can choose them as you like: if the assumption holds for any A and B, then in particular they hold for some A and B that you choose. For example, you are allowed to take A = B, A empty, B = S, A = S \ B, or whatever you think you need to prove that a = b.
My hint to you is: a single point x of S is also a subset {x} c S.
 
Is for every A and B the same as any A and B?
 
Yep, they both mean \forall A \subset S, \, \forall B \subset S.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top