Hi, I'm trying to figure out what the group and phase velocities of a wave packet describing a particle are in the relativistic case.(adsbygoogle = window.adsbygoogle || []).push({});

I started with the relationship between energy and impulse : E squared = p squared X c squared + rest mass squared X c to the fourth. In this, I input the Planck-Einstein relationships : E = h bar X omega and p = h bar X k.

I divide each side by h bar squared, take the square root to get omega, then divide by k to get the phase velocity or take the derivative relative to k to get the group velocity.

Here is what I get : phase velocity = c X square root of (one + (rest mass X c/p)squared)

group velocity = c / square root of (one + (rest mass X c/p)squared)

So that v phase X v group = c squared

I could not find this result anywhere so I have a doubt : can anyone tell me if I'm doing this correctly?

If it's correct, it's pretty interesting : we have a group velocity that is always less than c (as it should) and a phase velocity that is always greater than c, as if the particle was governed by waves that can't travel at less than the speed of light, just like tachyons...

Anyway, I'd be happy just knowing if I have the correct result for this, thanks for helping.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Group velocity of relativistic wave packet

**Physics Forums | Science Articles, Homework Help, Discussion**