Half-Harmonic Oscillator to Full-Harmonic Potential

Eigengore
Messages
1
Reaction score
0

Homework Statement


This problem was already answered:
"I have to find the allowed energies of this potential:

V(x)= (mω2^2)/2 for x>0
infinite for x<0

My suggestion is that all the odd-numbered energies (n = 1, 3, 5...) in the ordinary harmonic osc. potential are allowed since
ψ(0)=0
in the corresponding wave functions and this is consistent with the fact that
ψ(x)
has to be 0 where the potential is infinite."

now the new inquiry is that if the infinite potential is removed instantly. What is the probability of maintaining the same energy.

Homework Equations



none given aside from the other post

The Attempt at a Solution



my guess is that it shouldn't change because the odd solution is already part of the new solutions, thus it shouldn't switch. But I am tempted to consider that there are twofold more states to go to so the probability of maintaining the state is 0.5
 
Physics news on Phys.org
Instead of guessing, why don't you calculate the probability?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top