Mindscrape
- 1,854
- 1
A charged particle of mass m is attracted by a central force with magnitude F = \frac{k}{r^2}. Find the Hamiltonian of the particle.
I'm just wondering if I did this correctly because it seemed too easy. First I used the fact that -dU/dr = F = k/r^2, so the potential (with infinite boundary) is given by
U(r) = \frac{-k}{r}
Then using plane polar coordinates the Legrangian will be
L = T - U = \frac{1}{2} m (\dot{r}^2 + r^2 \dot{\theta}^2) + \frac{k}{r}
The general momenta will be given by
\frac{\partial L}{\partial \dot{r}} = p_r = m \dot{r}/<br /> and<br /> \frac{\partial L}{\partial \dot{\theta}}= p_\theta = mr^2 \dot{\theta}<br /> <br /> Putting the momenta in terms of the dots of the generalized coordinates<br /> \dot{r} = \frac{p_r}{m}<br /> and<br /> \dot{\theta} = \frac{p_\theta}{mr^2}<br /> <br /> So the Hamiltonian will be<br /> H(q_k, p_k) = \sum_j p_j \dot{q}_j - L(q_k, \dot{q}_k)<br /> i.e.<br /> H(r, \theta, \dot{r}, \dot{\theta}) = \frac{p_r^2}{m} + \frac{p_\theta^2}{mr^2} - \frac{1}{2}m(\dot{r}^2 + r^2 \dot{\theta}^2) - \frac{k}{r}<br /> and with the momenta equations<br /> H(r, \theta, \dot{r}, \dot{\theta}) = \frac{p_r^2}{m} + \frac{p_\theta^2}{mr^2} - \frac{1}{2}m((\frac{p_r}{m})^2 + r^2 (\frac{p_\theta}{mr^2})^2) - \frac{k}{r}<br /> <br /> simplified this will give the familiar H = T + U<br /> H(r, \theta, \dot{r}, \dot{\theta}) = \frac{1}{2} \frac{p_r^2}{m} + \frac{1}{2} \frac{p_\theta^2}{mr^2} - \frac{k}{r}
I'm just wondering if I did this correctly because it seemed too easy. First I used the fact that -dU/dr = F = k/r^2, so the potential (with infinite boundary) is given by
U(r) = \frac{-k}{r}
Then using plane polar coordinates the Legrangian will be
L = T - U = \frac{1}{2} m (\dot{r}^2 + r^2 \dot{\theta}^2) + \frac{k}{r}
The general momenta will be given by
\frac{\partial L}{\partial \dot{r}} = p_r = m \dot{r}/<br /> and<br /> \frac{\partial L}{\partial \dot{\theta}}= p_\theta = mr^2 \dot{\theta}<br /> <br /> Putting the momenta in terms of the dots of the generalized coordinates<br /> \dot{r} = \frac{p_r}{m}<br /> and<br /> \dot{\theta} = \frac{p_\theta}{mr^2}<br /> <br /> So the Hamiltonian will be<br /> H(q_k, p_k) = \sum_j p_j \dot{q}_j - L(q_k, \dot{q}_k)<br /> i.e.<br /> H(r, \theta, \dot{r}, \dot{\theta}) = \frac{p_r^2}{m} + \frac{p_\theta^2}{mr^2} - \frac{1}{2}m(\dot{r}^2 + r^2 \dot{\theta}^2) - \frac{k}{r}<br /> and with the momenta equations<br /> H(r, \theta, \dot{r}, \dot{\theta}) = \frac{p_r^2}{m} + \frac{p_\theta^2}{mr^2} - \frac{1}{2}m((\frac{p_r}{m})^2 + r^2 (\frac{p_\theta}{mr^2})^2) - \frac{k}{r}<br /> <br /> simplified this will give the familiar H = T + U<br /> H(r, \theta, \dot{r}, \dot{\theta}) = \frac{1}{2} \frac{p_r^2}{m} + \frac{1}{2} \frac{p_\theta^2}{mr^2} - \frac{k}{r}
Last edited: