jeff1evesque
- 312
- 0
Statement:
A(t) = |A|cos(\omega t + \alpha), B(t) = |B|cos(\omega t + \beta)
The time average of the product is given by:
<A(t)B(t)> = \frac{1}{T} \int^{T}_{0}A(t)B(t)dt = \frac{|A||B|}{2T}\int^{T}_{0}cos(2\omega t + \alpha + \beta)dt + \int^{T}_{0}cos(\alpha - \beta)dt] = \frac{1}{2}|A||B|cos(\alpha - \beta)Relevant equations:
Note: using trigonometric identities:
A(t)B(t) = \frac{1}{2} |A||B|[cos(2\omega t + \alpha + \beta) + cos(\alpha - \beta)]Questions:
How is \int^{T}_{0}cos(2\omega t + \alpha + \beta)dt = 0?
When I worked it out I got \int^{T}_{0}cos(2\omega t + \alpha + \beta)dt = \frac{1}{(2w)} sin(u) |^{T}_{0} = \frac{1}{2w}sin(2\omega t + \alpha + \beta)^{T}_{0} \neq 0Is there a real-world application for taking the product of two harmonic functions (even an application for phasors)??
thanks
A(t) = |A|cos(\omega t + \alpha), B(t) = |B|cos(\omega t + \beta)
The time average of the product is given by:
<A(t)B(t)> = \frac{1}{T} \int^{T}_{0}A(t)B(t)dt = \frac{|A||B|}{2T}\int^{T}_{0}cos(2\omega t + \alpha + \beta)dt + \int^{T}_{0}cos(\alpha - \beta)dt] = \frac{1}{2}|A||B|cos(\alpha - \beta)Relevant equations:
Note: using trigonometric identities:
A(t)B(t) = \frac{1}{2} |A||B|[cos(2\omega t + \alpha + \beta) + cos(\alpha - \beta)]Questions:
How is \int^{T}_{0}cos(2\omega t + \alpha + \beta)dt = 0?
When I worked it out I got \int^{T}_{0}cos(2\omega t + \alpha + \beta)dt = \frac{1}{(2w)} sin(u) |^{T}_{0} = \frac{1}{2w}sin(2\omega t + \alpha + \beta)^{T}_{0} \neq 0Is there a real-world application for taking the product of two harmonic functions (even an application for phasors)??
thanks
Last edited: