(adsbygoogle = window.adsbygoogle || []).push({}); Heat transfer -- aeroheating and material thickness

I'm trying to size the thickness of a shroud to encapsulate a payload on a small rocket. We're using carbon fiber pre-preg (k=6.83 W/m-K) and (per the aeroheating analysis based on the trajectory) the max heat rate is 908 kW/m^2.

The avionics housed inside the shroud are rated to 85 C (358 K).

How can I get an idea of what the thickness of the shroud needs to be to prevent overheating?

I tried to use Fourier's law for SS conduction through a plane wall as a crude first-order analysis to get an idea. So the outer temp. on the shroud moldline (To) is given by q"L/k + Ti. I've been picking inside temps. (Ti) that are some percentage of the max. temp the electronics can take (say, 50% or 179K) and a material thickness (ex. 1/8") and then comparing the predicted outer temp. with the glass transition temp. for the material. This doesn't seem like a very sound analysis, as it's also predicting overheating for basically every thickness I select.

Ideally, we could estimate the outer wall temp. and then calculate the thickness based on a desired inside temp. How should I approach this? I also don't have an estimate for h (heat transfer coefficient for convection) in this scenario.

I haven't had heat transfer in many years, so I think I'm feeling in the dark to some degree!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Heat transfer - aeroheating and material thickness

**Physics Forums | Science Articles, Homework Help, Discussion**