1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

I Heating upon sudden elastic compression of material

  1. Apr 24, 2016 #1

    I would expect the heating of an elastic material upon sudden elastic compression to be given simply by the first law of thermodynamics, i.e. Delta Q=Delta U + P Delta V where P is constant since the compression is applied suddenly as in a square-wave pressure pulse (this is equivalent to the change in enthalpy). This heat released by the material upon elastic compression should then be re-absorbed entirely by the material assuming periodic boundary conditions, and this is what gives rise to the rise in temperature of the material after the compression. If I'm not wrong then this heat released is basically converted entirely into thermal vibrational energy upon re-absorption (3NkbT in the classical limit). I tried calculating (using classical MD codes) the thermal energy of iron for example from static zero-temperature energy surface calculations and phonon vibrational calculations, however my predictions for the rise in temperature upon elastic compression from these static calculations according to the above reasoning is much higher than the one I observe in the actual dynamic simulations. Can you see anything wrong with my reasoning?

    Many thanks,

  2. jcsd
  3. Apr 29, 2016 #2
    Thanks for the post! This is an automated courtesy bump. Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted

Similar Discussions: Heating upon sudden elastic compression of material