logic smogic
- 54
- 0
Problem
Consider the spin precession problem in the Heisenberg picture. Using the Hamiltonian
H=-\omega S_{z}
where
\omega=\frac{eB}{mc}
write the Heisenberg equations of motion for the time dependent operators S_{x}(t), S_{y}(t), and S_{z}(t). Solve them to obtain \vec{S} as a function of t.
Formulae
\frac{d A_{H}}{dt}=\frac{1}{\imath \hbar}[A_{H}, H]
A_{H}=U^{\dagger}A_{S}U
U=e^{\frac{-\imath H t}{\hbar}}
Attempt
Well, computing the Heisenberg equations is pretty straitforward:
\frac{d S_{x}}{dt}=\frac{1}{\imath \hbar}[S_{x}, -\omega S_{z}]<br /> =-\frac{\omega}{\imath \hbar}[S_{x},S_{z}]<br /> =\omega S_{y}
\frac{d S_{y}}{dt}=\frac{1}{\imath \hbar}[S_{y}, -\omega S_{z}]<br /> =-\frac{\omega}{\imath \hbar}[S_{y},S_{z}]<br /> =-\omega S_{x}
\frac{d S_{z}}{dt}=\frac{1}{\imath \hbar}[S_{z}, -\omega S_{z}]<br /> =-\frac{\omega}{\imath \hbar}[S_{z},S_{z}]<br /> =0
But when it comes to solving for a function of t, I’m stuck with extra constants. My method here is to differentiate S_{x} twice, and then solve the resulting differential equation.
\frac{d^{2}S_{x}}{dt^{2}}=-\omega^{2} S_{x}
S_{x} = C_{1} e^{\imath \omega t}+C_{2} e^{-\imath \omega t}
What “initial/boundary conditions” do I use to determine the two constants above? Normalization of some sort?
Consider the spin precession problem in the Heisenberg picture. Using the Hamiltonian
H=-\omega S_{z}
where
\omega=\frac{eB}{mc}
write the Heisenberg equations of motion for the time dependent operators S_{x}(t), S_{y}(t), and S_{z}(t). Solve them to obtain \vec{S} as a function of t.
Formulae
\frac{d A_{H}}{dt}=\frac{1}{\imath \hbar}[A_{H}, H]
A_{H}=U^{\dagger}A_{S}U
U=e^{\frac{-\imath H t}{\hbar}}
Attempt
Well, computing the Heisenberg equations is pretty straitforward:
\frac{d S_{x}}{dt}=\frac{1}{\imath \hbar}[S_{x}, -\omega S_{z}]<br /> =-\frac{\omega}{\imath \hbar}[S_{x},S_{z}]<br /> =\omega S_{y}
\frac{d S_{y}}{dt}=\frac{1}{\imath \hbar}[S_{y}, -\omega S_{z}]<br /> =-\frac{\omega}{\imath \hbar}[S_{y},S_{z}]<br /> =-\omega S_{x}
\frac{d S_{z}}{dt}=\frac{1}{\imath \hbar}[S_{z}, -\omega S_{z}]<br /> =-\frac{\omega}{\imath \hbar}[S_{z},S_{z}]<br /> =0
But when it comes to solving for a function of t, I’m stuck with extra constants. My method here is to differentiate S_{x} twice, and then solve the resulting differential equation.
\frac{d^{2}S_{x}}{dt^{2}}=-\omega^{2} S_{x}
S_{x} = C_{1} e^{\imath \omega t}+C_{2} e^{-\imath \omega t}
What “initial/boundary conditions” do I use to determine the two constants above? Normalization of some sort?
Last edited: