Heisenberg uncertainty principle derivation and canonically conjugate vairables?

jeebs
Messages
314
Reaction score
5
Hi,
I've just worked through a derivation of the H.U.P. that uses the Cauchy Schwarz inequality to come up with the expression (\Delta A)^2(\Delta B)^2 \geq \frac{1}{4}|<[A,B]>|^2. This much I am happy with, but then it seems that when dealing with two "canonically conjugate observables" you set [A,B] = i\hbar to find the uncertainty principle (\Delta A)(\Delta B) \geq \frac{\hbar}{2}.

It clearly gives the result I was expecting, but I cannot seem to find out where this [A,B] = AB - BA = i\hbar comes from.
Is this something that can be figured out? Or, is it just something that some quantum mechanic somewhere has found out by working out the commutators of loads of operators and discovered that the commutators of conjugate observables just happen to be equal to i\hbar?
 
Physics news on Phys.org
There is no derivation; by definition a pair of canonical conjugate variables satisfies this relation.

There is some motivation behind it though, which has to do with canonical coordinates in classical mechanics, and the rules of canonical quantization. A canonical pair of coordinates in classical mechanics satisfy the fundamental Poisson brackets,

\{x,p\} = 1

Canonical quantization dictates that this is replaced by the commuator (along with the introduction of a Hilbert space and turning observables into operators).
 
One way to see where it comes from is by considering momentum as a generator of space translations. If V(a) is the unitary group of space translations:

V(a)\hat{x}V(a)^\dagger =\hat{x}+a

and if you write

V(a)=\exp(i\hat{p}a/\hbar)

then, by differentiating at a=0 , you get the canonical commutation relations.

Of course there is the question whym momentum is related to space translations? A partial answer is given by the fact that momentum is conserved when Hamiltonian is invariant under space translations (Noether's theorem).
 
To see why we use this in quantum mechanics imagine a differentiable function
\phi(x) and define
p = -i\hbar\partial_x
Then
(xp-px)\phi(x) = i\hbar\phi(x)
and so
[x,p] = i\hbar I
 
Another way to see this is to look at de Broglie waves.

A plane wave carrying momentum p looks like exp(ipx). The derivative acting on this "wave function" produces the eigenvalue p.

Of course this is no derivation, it simply shows that interpreting the derivative as momentum operator seems to be reasonable.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top